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Summary

A comprehensive development of nondimensional parameters and equations for nonlinear
and bifurcation analyses of quasi-shallow shells, based on the Donnell-Mushtari-Vlasov theory
for thin anisotropic shells, is presented. A complete set of field equations for geometrically
imperfect shells that includes kinematic equations, isothermal constitutive equations for generally
laminated shells, equilibrium equations, boundary conditions, and the compatibility equation is
presented in terms of general lines-of-curvature coordinates. In addition, the corresponding
virtual work statement is presented. A systematic nondimensionalization of these equations is
developed, several new nondimensional parameters are defined, and a comprehensive stress-
function formulation is presented that includes variational principles for equilibrium and
compatibility. Bifurcation analysis is applied to the nondimensional nonlinear field equations and
a comprehensive set of bifurcation equations are given that include the effects of pre-bifurcation
rotations, which are commonly neglected. These bifurcation equations also include a stress-
function formulation with variational principles for equilibrium and compatibility of the adjacent
equilibrium states.

An extensive collection of tables and figures is presented that shows the effects of lamina
material properties and stacking sequence on the nondimensional parameters. In particular,
results are presented for nine lamina material systems and several stacking sequences, and are
independent of the shell geometry. These stacking sequences include balanced symmetric angle-
ply laminates, balanced antisymmetric angle-ply laminates, symmetric quasi-isotropic laminates,
antisymmetric quasi-isotropic laminates, and unsymmetric quasi-isotropic laminates. Results are
also given for unbalanced, unsymmetric laminates composed of perpendicular unidirectional
plies aligned with the shell coordinate curves and angle plies.

Introduction

A common structural element of aecrospace vehicles is the thin-walled shell. Often, aerospace
shell structures are tailored from fiber-reinforced, laminated-composite materials to reduce
structural weight, increase strength and stiffness, and improve one or more performance
characteristics of a vehicle. In a tailoring process, it is desirable to know the "landscape" of the
design space so that a designer can assess the sensitivity of a candidate optimal design to the
variations in structural characteristics that may occur in a manufacturing process or in a design
change introduced to accommodate some other vehicle attribute. This point is particularly true for
laminated-composite structures, which offer a much larger design space than metals because of
the plethora of material systems available and the laminate constructions that are possible. As a
result, nondimensional parameters are sometimes used to navigate the design space. In particular,
many different laminate constuctions may correspond to the same set of nondimensional
parameters, and the relative magnitudes of the parameters can be used to identify special cases in
which one or more parameters are negligible. This correspondance effectively reduces the
dimensionality of the design space to something that can be managed by designers. As a result,
nondimensional parameters also provide insight into the development of scaling technology used
to reduce the cost of experimental validation and certification of large-scale structures.
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Several early works have been published that use nondimensional parameters to characterize
structural behavior and to faciliate design. For example, Seydel used nondimensional parameters
to characterize the shear-buckling behavior of orthogonally stiffened long, flat plate strips made
of metal or plywood in the early 1930s."? In his study, the parameters were identified by modeling
the stiffened plate strip as a homogeneous orthotropic plate and by using the corresponding
differential equation for buckling, derived by Huber around 1923.° Seydel’s parameters and
results appeared in a compilation of design technology for airplane design in 1935.* Similarly, in
1946, Cozzone and Melcon’ presented column buckling results in terms of nondimensional
parameters. Their work was driven by the need to address the numerous new aluminum and steel
alloys being used in airplane design. Perhaps one of the most well known nondimensional
parameters to appear in the 1940s is the "Z" parameter introduced by Batdorf, which characterizes
the effects of length, thickness, and radius of curvature on the linear bifurcation buckling of
isotropic cylinders.*"

Around 1950, Thielemann'' presented an in-depth study of the buckling behavior of generally
orthotropic plates subjected to compression and shear loads. This class of plates is similar to
symmetrically laminated plates in that they exhibit anisotropy in the form of coupling between
pure bending and twisting deformations. More specifically, Thielemann presented numerous
results for specially orthotropic plates in terms of one of Seydel’s nondimensional parameters, and
introduces two additional nondimensional parameters to characterize the effects of anisotropy on
the buckling of generally orthotropic plates. In 1952, Wittrick" used nondimensional parameters
to simplify the buckling design of rectangular specially orthotropic plates subjected to
compression loads. A similar study was presented by Shuleshko in 1957." In 1960, Thielemann'
presented another in-depth study that focuses on the buckling and postbuckling behavior of
specially orthotropic, thin-walled cylinders with initial geometric imperfections and subjected to
compression, shear, and internal pressure. In this reference, the nonlinear and buckling responses
are obtained by using a single equilibrium equation and a single strain-compatibility equation.
Several nondimensional parameters, in addition to those used for specially orthotropic plates, that
are needed to characterize the response trends are also identified. Similar studies were presented
by Geier"” in 1965 and Seggelke and Geier'® in 1967 that also addresses the effects of stiffener
eccentricity on the buckling response of cylinders.

As the weight saving potential of fiber-reinforced and fabric-reinforced plastics started
becoming apparent, the use of nondimensional parameters to characterize common response
trends and behavior also increased. In 1968, Brukva'” presented buckling results, in terms of
nondimensional parameters, for specially orthotropic plates subjected to axial compression and
with various combinations of clamped and simply supported edges. The results of his study were
aimed at understanding the behavior of plates made from a glass-reinforced plastic material. In
1968-1970, Khot' " and Khot and Venkayya® used nondimensional parameters to characterize
the imperfection sensitivity of generally laminated, fiber-reinforced shells subjected to axial
compression and with small initial geometric imperfections. In these references, the nonlinear and
buckling responses are obtained by using a single equilibrium equation and a single strain-
compatibility equation. These two equations were shown to be significantly more complicated
than the corresponding equations for generally orthotropic plates. Nondimensional parameters
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were also identified that represent the anisotropies associated with coupling between membrane
dilatation and distortion, coupling between pure bending and twisting deformations, and coupling
between membrane and bending deformations. The relative magnitude of these parameters
provide measures of the relative importance of each type of coupling, and when some coupling
terms can be deemed negligible, analytical solutions can sometimes be obtained. Also in 1970,
Johns™ presented a review of results for the shear buckling of isotropic, specially orthotropic, and
generally orthotropic rectangular plates. This review gives numerous generic results, useful for
design, in terms of Seydel’s nondimensional parameters and nondimensional buckling
coefficients. Nondimensional parameters and results are also given that characterize the effects
of edge rotational restraint on the buckling resistance. A similar in-depth study with numerous
general results was given by Housner & Stein in 1975.%

Later, in 1977, Wiggenraad® used nondimensional parameters and buckling coefficients to
study the effects of anistropy associated with coupling between pure bending and twisting
deformations on the buckling of rectangular symmetrically laminated plates subjected to
compression and shear loads. The nondimensional parameters used to characterize the anisotropy
are different than those presented by Thielemann. A large number of results are presented in this
reference that illustrate the sensitivity of the buckling response to variations in the
nondimensional orthotropy and anisotropy parameters. An extensive study of the generic
buckling and vibration behavior of specially orthotropic rectangular and circular plates was
presented by Oyibo™ in 1981 that uses affine transformations. This approach yields the plate
response in terms of two independent nondimensional parameters, referred to as the generalized
Poisson’s ratio and the generalized rigidity ratio by Oyibo. The generalized rigidity ratio for
rectangular plates is the reciprocal of the parameter defined by Seidel'” in the 1930s. Likewise, a
substantial amount of generic buckling-design data was presented by Fogg™ in 1982 for laminated
composite plates and curved panels in terms of nondimensional parameters and by Brunelle and
Oyibo™ in 1983 for specially orthotropic rectangular plates. Oyibo”* and Stein™ also presented a
substantial amount of generic results for flutter and postbuckling, respectively, of specially
orthotropic rectangular plates in 1983. Also in 1983, Nemeth® presented nondimensional
parameters that characterize the effects of anistropy associated with coupling between pure
bending and twisting deformations on the buckling of rectangular symmetrically laminated plates
subjected to compression loads. The parameters given in this reference are identical to those
previously given by Wiggenraad.” A couple of years later, Oyibo and Berman® and Nemet
published indentical forms of the anisotropy parameters that are different from, but similar to,
those previously given by Wiggenraad™ and by Nemeth.” These nondimensional parameters have
been used extensively by Nemeth®* to develop generic design data for buckling of laminated
composite plates subjected to various loading conditions. Moreover, the nondimensionl
parameters given in these references are used to quantify just how "close" various families of
quasi-isotropic laminate are to being isotropic. In 1985, Stein**extended his earlier work to
include plates subjected to shear and combined loads. Likewise, Brunelle” *’ extended his earlier
work in 1985 by examining the values of his nondimensional parameters for several orthotropic
materials, and in 1986 by using nondimensional parameters to develop similarity rules for
buckling and vibration and by deriving nondimensional parameters and equations for large
deflections of specially orthotropic plates. Vibration analysis and generic results for specially
orthotropic circular plates were also given by Oyibo and Brunelle® in 1985. Additional generic

33,34
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results for the bending, buckling, large deflection, postbuckling, and linear and nonlinear
vibration of symmetrically and unsymmetrically laminated, angle-ply and cross-ply rectangular
plates were presented by Yang, Shieh, Liu, and Kuo in 1987 through 1989.** Moreover, the
work presented in references 49-52 and 55 is based on the Reissner-Mindlin first-order
transverse-shear-deformation plate theory. Brunelle and Shin presented detailed studies of the
postbuckling behavior of rectangular specially orthotropic plates, also in 1989, by using affine
transformations and nondimensional parameters to obtain generic response trends.” ™

In the 1990s, Nemeth®*' extended his previous work to develop nondimensional parameters
and equations for linear bifurcation buckling of symmetrically laminated shallow shells with
double curvature. The analysis presented in these references uses a single equilibrium equation
and a single strain-compatibility equation, and the nondimensionalization procedure used was
heavily influenced by the previous work done by Stein™ on postbuckling of specially orthotropic
plates. In addition to the nondimensional parameters presented in references 30 and 34,
parameters that characterize the anisotropy associated coupling between membrane dilatation
and distortion were given, and analogues of the Batdorf "Z" parameter were derived. In addition,
generalizations of Donnell’s and Batdorf’s equations for cylinder buckling (see references 6, 7,
and 10 ) were presented. Also in the 1990s, Radloff et. al.”” developed a nondimensional buckling
analysis for symmetrically laminated trapezoidal plates subjected to uniaxial compression. A
study of the generic bending, buckling, and vibration behavior of antisymmetric angle-ply
laminates was presented by Lee and Yang® in 1996. In 2000, Nemeth and Smeltzer* presented
formulas for the attenuation length of a bending boundary layer in generally laminated shells. In
this reference, the attenuation length of the bending boundary layer is characterized by two
nondimensional parameters; that is, one for the shell orthotropy and one for the general
anisotropy. Values of these two parameters are also presented for nine different lamina material
systems and several laminate stacking sequences. Later, in 2001, Hilburger et.al.” used
nondimensional parameters, based on the Reissner-Mindlin first-order shear-deformation plate
theory, to obtain scaling laws for a representative portion of a blended-wing-body transport
aircraft.

From 2002-2008, Weaver and his colleagues®” made extensive use of
nondimensionalization procedures and parameters to gain insight into the behavior of laminated-
composite structures. In particular, "knockdown" factors that account for the effects of flexural-
twist and extension-twist anisotropies on the buckling of compression-loaded cylindrical shells
are given in references 66-68. The results presented in reference 67 indicate that the importance
of flexural-twist anisotropy depends strongly on the cylinder curvature. A similar finding was
obtained by Nemeth™*' for doubly curved shells subjected to shear loading. Also, design-oriented
approximate solutions for compression-loaded long plates, in terms of nondimensional
parameters, are given in references 70 and 74 for buckling and in references 69 and 72 for
postbuckling. Moreover, a design-oriented approximate solution for compression-loaded,
generally laminated cylindrical shells is given in reference 71, that uses the reduced bending
stiffnesses obtained when the partially inverted form of the constitutive equations is used. In 2007,
Weaver and Nemeth™ presented bounds on the nondimensional parameters that govern
symmetrically laminated plate buckling behavior, which provide insight into the potential gains
in buckling resistance that are possible through laminate tailoring and composite-material
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development. Similarly, in 2008, Weaver and Nemeth'” presented design-oriented
nondimensional buckling interaction curves for specially orthotropic plates subjected to
combined loads. These curves represent a broad range of plate-bending orthotropy and inherently
indicate the corresponding design sensitivities.

Recently, Mittelstedt and Beerhorst™ presented nondimensional buckling curves for specially
orthotropic compression-loaded plates with finite length and elastically supported edges. These
results are expressed in terms of the reciprocal of Seidel’s orthotropy parameter and a
nodimensional measure of edge restraint, and are used for the design of stiffened panels. Also
recently, Nemeth and Mikulas™ presented simple formulas and results for use in determining the
buckling resistance and stiffness design of laminated-composite cylinders subjected to
compression loads. Their work is based on the nondimensional parameters and equations given
in reference 60. One noteworthy aspect of this work is that the validation of the simple formulas
presented is simplified significantly by establishing a simple parametric relationship between two
of the nondimensional parameters governing the response.

The literature discussed previously in the present study indicates clearly the potential for
simplifying and unifying design criteria for laminated-composite structures by using
nondimensional parameters and equations. Although a lot has been done in this regard to develop
generic design technology, the task is monumental and much more remains to be done,
particularly for shell structures. Thus, one goal of the present study is to extend the
nondimensionalization procedure given in references 60 and 61 for geometrically perfect,
symmetrically laminated, quasi-shallow shells to include generally laminated quasi-shallow
shells, with initial geometric imperfections, undergoing small strains and moderately small
rotations. Herein, the term, "quasi-shallow shell," is used (e.g., see Brush and Almroth®, p. 143),
to denote shallow shell panels that are relatively flat and nonshallow shells that exhibit
deformations that are rapidly varying functions of the reference-surface coordinates. These
equations, and the corresponding nondimensional parameters, should be useful in the
development of generic design technology that represents the effects of geometry and laminate
construction on the imperfection sensitivity of shells subjected to destabilizing loads. Another
goal is to present a collection of data for the nondimensional parameters presented subsequently
that shows the effects of lamina material properties and laminate stacking sequence on their
values and that are independent of the shell geometry. To accomplish these goals, equations of
quasi-shallow shell theory that govern the nonlinear deformations of geometrically imperfect
shells are presented first. Then, nondimensionalization of the kinematic equations, constitutive
equations, equilibrium equations, boundary conditions, compatibility equation, and virtual work
is presented and several new nondimensional parameters are defined. Next a nondimensional
stress-function formulation of the nonlinear boundary-value problem is presented that yields
extensions to the Donnell-Stein equations given previously in references 60 and 61. In addition,
nondimensional stress-function formulations of the principles of virtual work and complementary
virtual work are given. Nondimensional bifurcation equations follow that also include kinematic
equations, constitutive equations, equilibrium equations, boundary conditions, the compatibility
equation, and the virtual work associated with equilibrium states adjacent to a primary
equilibrium path. Then, a nondimensional stress-function formulation of the boundary-eigenvalue
problem is presented that includes variational principles for equilibrium and compatibility. For all
these analytical developments, an extensive list of symbols is given in the Appendix. Finally an
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extensive collection of nondimensional-parameter data is presented for nine lamina material
systems and several laminate stacking sequences that should be useful to design-technology
developers.

Equations for Nonlinear Deformations

The basic equations for nonlinear deformations of doubly curved quasi-shallow (e.g., see
Brush and Almroth®, p. 196) shells with uniform thickness h are presented subsequently in terms
of the orthogonal, lines-of-curvature, curvilinear coordinates (§,,§,,C) that are depicted in figure 1
for a generic shell reference surface A. Associated with each point p of the reference surface,

with coordinates (§ ,E,,0), are three perpendicular, unit-magnitude vector fields &,, €,, and fi. The
vectors &, and &, are tangent to the §, -and & -coordinate curves, respectively, and reside in the

tangent plane at the point p. The vector i is tangent to the T-coordinate curve at point p and

perpendicular to the tangent plane. This class of parametric coordinates permits substantial
simplification of the shell equations and has many practical applications.

Lines-of-curvature coordinates form an orthogonal coordinate mesh and are identified by
examining how the vectors €, &,, and i change as the coordinate curves are traversed by an
infinitesimal amount. In particular, at every point q that is infinitesimally close to point p there is
another set of vectors €,, €,, and i with similar attributes; that is, the vectors &, and &, are
orthogonal and tangent to the &, -and § -coordinate curves at q, respectively, and reside in the
tangent plane at the point q. Likewise, vector fi is tangent to the CT-coordinate curve at point q
and perpendicular to the tangent plane at point q. Next, consider the finite portion of the tangent
plane at point p shown in figure 1. Because of the identical properties of the vectors €,, €,, and il
at every point of the surface, an identical, corresponding planar region exists at point q. Therefore,
the vectors €,, €,, and fi at point g can be obtained by moving the vectors €,, €,, and i at point p

to point g. In addition, the plane region at point p moves into coincidence with the corresponding
plane region at point q as the surface is traversed from point p to point q. During this process, the
plane region at point p undergoes roll, pitch, and yaw (rotation about the normal line to the
surface) motions. The roll and pitch motions are caused by surface twist (torsion) and curvature,
respectively. The yaw motion is associated with the geodesic curvature of the surface curve
traversed in going from point p to q. When a line-of-curvature coordinate curve is traversed in
going from point p to q, the planar region at point p undergoes only pitch and yaw motions as it
moves into coincidence with the corresponding region at point q. Rolling motion associated with
local surface torsion does not occur.

These shell equations used subsequently in the present study are relatively well known (e.g.,
see the classic paper by Sanders®) and are referred to commonly as the equations of Donnell-
Mushtari-Vlasov shell theory (see the textbooks by Brush & Almroth* and Novozhilov*).
Moreover, these equations are based on the fundamental assumptions of classical Love-Kirchhoff
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shell theory, which neglects transverse-shear flexibility. First, the kinematic equations are
presented, which include the displacement-field distribution, and the strain-displacement
relations. Then, the stress resultants, constitutive equations, virtual work, and the work-conjugate
nonlinear equilibrium equations and corresponding boundary conditions are presented, followed
by the strain compatibility equation. These equations represent a simple, approximate
representation of nonlinear shell behavior that has seen wide practical application. For each group
of equations, the generalization to include a known distribution of initial geometric imperfection
is given. The imperfection is manifested as a "small" displacement normal to the idealized shell
reference surface.

Kinematic Equations

In the Donnell-Mushtari-Vlasov theory of quasi-shallow shells, the components of the
displacement vector field of the material points comprising a shell are denoted by ‘U, (€ .E,.0),

U,(E,.E,.C), and U,(E,E,L), where (§, &,, C) are orthogonal curvilinear coordinates for points of

three-dimensional Euclidean space. In addition, the coordinates are defined for a, <&, <b, ,

a,<&,=<b,,and - % =C= % (see figure 2), where h is shell thickness. Similarly, the

displacement components of points of the two-dimensional shell reference surface, defined by T
=0, are denoted by u,(§,§,), u,(§,§,), and w(E,E,), where (§, E,) are orthogonal curvilinear
Gaussian coordinates for the reference surface. These surface displacements are usually
measured with respect to a given geometrically perfect, idealized shell reference surface.

To analyze to response of a shell with relatively small initial geometric imperfections,
measured with respect to the idealized shell reference surface, Donnell* (see p. 349) introduced
an "imperfection" function w (g,&,). This imperfection function represents a distribution of small
deviations in the C-coordinate direction, measured perpendicular to the tangent plane at each
point of the shell reference surface, for an unloaded shell that is stress and strain free. Under the
application of loads, the shell normal displacement associated with deformation from the
idealized configuration is given by w,(€,&,) + W(E,, €,). The corresponding relationships between
the three-dimensional displacement-field components and the surface-displacement-field
components of the Donnell-Mushtari-VIasov quasi-shallow shell theory are given by

Uy (€ B0 T ) = uy(E,. E,) +C [wl(zl, g)+p(E. az)] (1)
Un(E, B0 T ) = uy(E,. E,) +C [wz(zl, g,) + phe.. az)] )
‘113(%1’ €, C ) = W(EI’ Ez) + WI(EI’ Ez) 3)
where
N @
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and

pr=— L 2n 5)

are fields that define the initial stress- and strain-free rotation of a material line element that is

tangent to the shell reference surface, at a given point of the reference surface. Similarly, vy, + |31l

and .+ B, are fields that define the net rotation of a material line element that is perpendicular
to the shell reference surface, at a given point of the reference surface, with respect to the
undeformed idealized configuration. The symbols A, and A, are the coefficients of the first
fundamental form of the shell reference surface that are defined by

(dS)Z: (AldEI)2+ (Azd%z)2 (6)

where ds is the differential arc length between two infinitesimally neighboring points of the
surface.

The normal-strain fields for a three-dimensional shell body are denoted by ¢, ,(§,.E,.0),
£,,(€,E,,0), and €,,(E.E,.0), and the corresponding shearing strains are denoted by v,,(§,.E..0),
V,5(§,.E.,8), and v,,(€,.E,.0). The relationships between the three-dimensional shell strains and the
reference-surface strains in the Donnell-Mushtari-Vlasov theory are given by

e,(8, 5.0 ) =¢€,(8. &) + Tk, (E1 &) (7a)
€0(E1n 82 § ) = €55(81. B2) + TK5(E10 &) (7b)
€5(81, 6.2 ) =0 (7¢)
Vo6 €2 T ) =Y 0h(En &) + Tk L(E1 &) (7d)
Yia(815 82, C ) = ¥1s(E1r &2) (7e)
Yos(E10 E2. T ) = (€1, Ea) (7)

where &', €],, and v, are the membrane reference-surface strains; 7, and k5, are the changes in

surface curvature; «3, is the change in surface torsion; and yi, and y5, are the transverse shearing

strains. The strain expressions result from substituting equations (1)-(3) into the corresponding
strain-displacement relations of the theory of elasticity (see Novozhilov®, pp. 56-60) and
simplifying the results according to the presumptions of the Donnell-Mushtari-Vlasov theory.
This process yields

21



where

C_ L w AL w1y
ST Aes A o, TR, T2 TR

o 18u2+ u, OJA,

= Aoe. A, g TR, T2lP) FBP

+

N|—

o 1 ou, u, 6A2+ 1 du, u, OJ0A,

I I
YIZ_A_MEZ AIA2 6%, A.GE. AIA2 agz +61B2+B162+62B1

= L0 W 9A,
A 08, AA, I,
K2, = 1 9, P, JA,
A, 08,  AA; 0§,

Y;_z =, - [32

Blz_iaw

A, 9E,

__ 1 ow
b2 = A, 98,

(8a)

(8b)

(8¢)

(9a)

(9b)

(9¢)

(10a)

(10b)

(11a)

(11b)

are fields that define the rotation of a material line element that is tangent to the imperfect-shell
reference surface, at a given point of the reference surface. The symbols R, and R, represent the
principal radii of curvature of the shell reference surface along the § and &, coordinate directions,
respectively. Expressions for the rotations, 1, and 1),, are obtained in the Donnell-Mushtari-
Vlasov thin-shell theory by enforcing the presumption that the transverse shearing strains are
negligible compared to the other strains. This consideration gives ¢, =f3, and 1y, =f3,. As pointed
out by Donnell® (see p. 349), strain-like terms associated with the "imperfection" function w, are
subtracted from the corresponding terms associated with w + w, to obtain equations (8)-(10). This
subtraction process enforces the requirement of a strain-free state in the absence of applied loads.

22



Stress Resultants and Constitutive Equations
The linear elastic constitutive equations for a laminated composite shell depend on the
specific definition for the two-dimensional stress resultants that are used to represent the internal

stresses, and on the presumed strain distribution. In the Donnell-Mushtari-Vlasov theory, the
stress resultants are defined by

(R “25‘)
2

fﬁ\ IO\ (12b)

M |

and

[l _| ° {%}dg (13)

where 0,,, 0,,, 0,,, O,,, and O,, are stresses. Equations (7) define the strain distribution, which is
expressed in matrix form as

€, 8(1)1 K(])l
€p = En T Z; K» (14)
Yi2

The state of stress in a shell is presumed to be a state of plane stress, and is represented by

(OF N (:211 §12 §16 €.
0y =[Q1QxuQx[ &x (15)
\012/ 616 Qze 666 \Yn/

where the subscripted Q symbols denote the transformed, reduced stiffness coefficients (reduced
for a state of plane stress) and are found in the well-known book by Jones.* Note that all
quantities that appear in equation (15) are functions of the T coordinate. The two-dimensional
constitutive equations for a shell are obtained by substituting equation (14) into equation (15) first
and then by substituting the resulting expression into equations (12a) and (12b). This procedure
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yields

Nll A11A12A16B11 B12 B16 8(1)1
N22 AIZ Azz A26 B12 Bzz st €n
N, — Ag Ay Ag Bis By B YTz (16)
M, B, B,BsD, D,Dy K(;1
M,, B, By, By Dy, Dy, Dy K(;z
M12 Bm B26 B66 Dm D26 Dss_ K(:z
where
P
ALAL A 2 911912 916 (17)
ALAyAy|= 912 922 926 dc
A16 A26A66 _% Q16 Q26 Qse
e
B, B, B 911 912 916 (18)
B,ByBy|= (_212 922 926 €dg
B By By h Q16 Qa6 Qss
2
W
D,,D,Dy (_211 912 916 5 (19)
D,, D, Dy | = 912 922 926 C dg
D5 Dy Dgs h Q16 Qa6 Qss
2

In equations (17) through (21), the symbol h denotes the shell thickness and the reference surface
is the middle surface of the shell. For a laminated-composite shell with thin layers, the layer
properties are presumed constant and the integrands that are indicated in equations (17) through
(19) are piecewise constant. Thus, the integrations are replaced by summations of the appropriate
layer attributes over the number of layers that comprise a specific shell.

To gain insight into the nondimensionalization process presented herein, and for comparisons
with other works, it is useful to express the constitutive equations in the partially inverted form

/8?1\ A, ad A INH\ b,b,by /K(L\
=|apapa [ Ny p+|b,byb Ko (20a)
bbb

822 12 922 Do 2
\YTz/ \Nn/ 66 \Klzf

A6 Az des 16 D6
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where
-1
a;,a, a5 AL ALA
alZ a22 a26 - AIZ A22 A26
am a26 a66 AI(; A26 A66
1,
bllb12b16 A11A12A16 B11B12B16
b12b22b26 = - A12A22A26 BIZ B22 B26
b16b26b66 A16 A26A66 B16B26 B66
. -1
dll d12d16 D11D12D16 B11B12B16 AIIAIZAIG
dlZ d22 d26 = D12 D22 D26 - BIZ B22 BZ(y A12 A22 AZ&
d16 d26 d66 D16 D26 D66 B16 B26 B66_ A16A26A66

Nonlinear Equilibrium Equations and Boundary Conditions

W
W W

(20b)

(21a)

(21b)

(21c)

Equilibrium equations and boundary conditions that are work conjugate to the strains given
by equations (7)-(10) are obtained by applying the principle of virtual work. The statement of this
principle for the Donnell-Mushtari-Vlasov theory of quasi-shallow shells is obtained by using
equations (7), (12), and (13) with the general virtual work statement for a three-dimensional solid
undergoing "small" strains and "moderately small" rotations (e.g., see Washizu®, pp. 325-327).

The resulting expression is given by

ff 6Vvvim A1A2d§|d§2 = ff 6Wext AIAZdEIdEZ + f d
A A A

(22)

where OW,  is the virtual work of the internal stresses and dW,, is the virtual work of the external
surface tractions acting at each point of the shell reference surface A depicted in figure 1. The

symbol dW., represents the virtual work of the external tractions acting on the curve JA that

encloses the region A, as shown in figure 1. The internal virtual work is given by

6“/int = N11 68?] + N12 6YT2 + N22 68;2 + Mll 6]((;1 + M12 6]((;2 + M22 6](;2 + Qla‘YT3 + Q26'Y(2‘3

(23a)

In this expression, the virtual strains &, , etc. are obtained by taking the first variation of the
strains given by equations (8)-(10). The pointwise external virtual work of the tangential surface
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tractions q, and q, and the normal surface traction q, is
awext = q16u1 + %5112 + q36W (23b)

The surface tractions q,, q,, and q, are presumed positive-valued in the positive §,, &, and T
coordinate directions, respectively, as shown in figure 2. The boundary integral in equation (22)
represents the virtual work of forces per unit length that are applied to the boundary dA of the
region A, and it is implied that the integrand is evaluated on the boundary. The symbol ds
denotes the boundary differential arc-length coordinate, which is traversed in accordance with the
surface divergence theorem of Calculus. In the present study, the domain of the surface A is

givenby a, <&, =b, and a,=<§&, =b,, and the boundary curve dA consists of four smooth arcs

given by the constant values of the coordinates §, and &, as depicted in figure 2. For this case,
the boundary integral is expressed more precisely as

b, b
f SW., ds = N(E,)5u, + S(E,)0u, + V(E,)0w - M(E,)-L-9OW | A g, +
dA Al agl a) (230)
b, b
‘S(El)éul + N(&,)3u, + V(E,)ow - M(g,)ALaa%W A dE,

a;

In equation (23c); N, S, and V represent external forces per unit length that are applied normal,
tangential, and transverse to the given edge, respectively, as shown in figure 2. Likewise, M is a
moment per unit length with an axis of rotation that is parallel to the given edge, at the given point
of the boundary. In addition, V contains a contribution due to an applied twisting moment per unit
length, consistent with the definition of the Kirchhoff shear stress resultant used in classical plate
and shell theory.

The equilibrium equations and boundary conditions are obtained by applying "integration-
by-parts" formulas, obtained by specialization of the surface divergence theorem, to the first

integral in equation (22). For two arbitrary differentiable functions f(&,.8.) and g(&..%.) , the
"integration-by-parts" formulas are given in general form by

[ af > e ag nl f A X
7 (8] dgde = (fg deide. + A—gz (Reg)ds (24a)
J JA J JA J oA
~ o ¢ ~o ~
ad _ ag fg ¢ o 2
agz(g) de de, = — (f)a—Ez de dE, + A—I(N ez) ds (24b)
J JA J JA J oA
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where N is the outward unit-magnitude vector field perpendicular to A and dA, and & and &,
are unit-magnitude vector fields that are tangent to the &, and &, coordinate curves, respectively,

at every point of A and dA, as shown in figure 1. Thus, at a given point of dA, N lies in the surface

tangent plane at that point. For the specific surface domain givenby a, <&, =<b,

a, =&, = b, ,and enclosed by the four smooth arcs given by the constant values of the coordinates

€, and &, equations (24) are expressed as

b,
-
jj e g) d& dg, = ff P S dg de, + f {fg}, dg,
g aeae=— [ [ 028 s [ et
agzg s, = 9, =T \1874,95:
A A 4

b,
{fg} = f(b &) g(b &) - fla,&,) gla, &)

where

(fg), = £(£.b.) glE.bs) - £(2,a,) (2.2

The notation defined by equations (25) is used throughout the present study.

The virtual strains appearing in equation (23a) are given by

8¢, = 66u,+ ou, 0A, 6w—([31+[311)L66w

1
_ +_
A, 08,  AA, 95, R, A, g,

o 166[12 6u1 aAz 6W 66w
de5, = + + =% - + B,
= ATaE tAA ae T R PP ATSE

6y0 _ 1 9d%u,  du, 8A2+ 1 9du, du, I9A,
PUOALOE, AA, 9, AL 9E, A, OE,

— (B + B (B4 )TN

A, 98, A, 9E,

o

6](“ — aawl + 61P2 a‘A‘l

1
A, 98, AA, I,
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(25a)

(25b)

(25¢)

(25d)

(26a)

(26b)

(26¢)

(27a)



° 1 35”4’2 611)1 A,
ok, = -1
®2 AT, TAA, OF,

i _ 1 9%y, oy, 8A2+

K, = 1 9%y, Oy, IA,
AZ a§2 AIAZ a%l Al a%l A1A2 8E2

_ 1 9dw
6’Yl'§_6wl + A] aEI
1 90w

8y, =9 o
Y23 w2+ A2 6%2

(27b)

(27¢c)

(28a)

(28b)

By using these virtual strain expressions, applying equations (25) to the first integral in equation
(22), and enforcing the Fundamental Lemma of the Calculus of Variations (see Reddy”, pp. 107-

108), the equilibrium equations are found to be

oA, IA,

%&(NIIAZ)+%(N12A,)—N22 og tNe e tAAG =0
G%I(N,ZAQ) + (%Q(NZZAI) -N, ‘Z‘g; +N,, %/;2 +AAq,=0
e QAL+ QA ) + A.Az(q3 - R R Pm) =0
a%I(MHAZ) + (%Z(MHA,) M, % +M,, %‘2‘ -AAQ =0
a%(Mqu) + a%2(1\422A,) _M, % M, ?32 ~AAQ,=0

where the nonlinear terms are contained in

A AP, = i[Az(I:Bl + BII]NII + [Bz + Blz]le)]

9E,
2 A[B+ BN [ BN

Expanding the derivative terms gives
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(29a)

(29b)

(29¢)

(294d)

(29¢)

(30)



_ |1 oN,, 1 ON,, N“{ 1 0A, le{ 1 oA, .
" [ ' Tala 621)+A1\Aza§2 (B.+8)
1

Al aEl A2 a%z
1 9N, 1 ON N 0A N,,[ 1 9A, I
FENRERE IR Y

TlA, 98, T AL 0E, T AL\A, GE
Jd I
N“(A 2 (B+B )) 22(A1 Fen (R +Bz))

d I d I
—NQIA%G—a(m O (IR ﬁl)]

(31

and using equations (29a) and (29b) gives the alternate form

Pm:q]([31+[3[])+q2(ﬁ2+ﬁ12)
(62"‘612) 1 A,
IR

{p,+P')

11

22

B, +B, IA, 9 i
PR o) o) @)

(Bi+Bi)( 1 aa,)]
A, A, 6%2)

\
1 BZ+B
_A—,a—a(ﬁz+ﬁz)-( A, )( A, )

-N (B +8))-

5
>
5]
%
yrt
[

The boundary conditions that result from enforcing the Fundamental Lemma of the Calculus of
Variations (see Reddy”, pp. 107-108) consist of two groups. On the edges given by & =a, and
g, = b,, the boundary conditions are

N,=N(E,) or u =A[g) (33a)

N,=S(E) or u,=Ay[E) (33b)

Q, +K%‘[(B‘ +BUN, + (B + BN = V(E) o W=AE) (33¢)
M, =M(E) or B, =PE) (33d)

where
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Q = (33e)

_ 1 oM, + 1 6M12+M”—M22( 1 8A2>+2M12{ 1 aAl)
Al ag_,l A2 a%z A2

A, 0, A, A, 0,

where A, (E,), A,(E,), and A (&,) are applied displacements and ®(&,) is an applied rotation. On the
edges given by §, =a, and E, =b,, the boundary conditions are

N,=N(E) or u,=A,[E) (34a)
N12=S(§1) or 111=A1(§1) (34b)
Qv MM (B BN+ (o PN = ViE) or WEAMS) (o)
M,,=M(E,)) or B,=DE) (34d)
where
1 8M12+ 1 8M22+M22—M11{ 1 9A, 2M,,[ 1 9A,
L=NTE YA e T A, A s )AL Ao (34e)

where A,(€)), A,(€,), and A,(€,) are applied displacements and ®(&,) is an applied rotation. In
addition, "corner conditions" arise that must be satisifed; that is, either M,, or w must be
specified at the points (a, a,), (a,, b,), (b,, a,), and (b, b,).

Nonlinear Compatibility Equation

The compatibility equation of the Donnell-Mushtari-Vlasov theory for a geometrically
perfect shell is presented in the book by Wempner® (see p. 616), in terms of tensor analysis. The
corresponding equation for an imperfect shell is obtained from this equation by replacing the shell
normal displacement with w (€, &) + w(E, E,), and then by noting that when w(g,&,) =0 the
strains vanish and compatibility must be satisfied. The resulting equation for lines-of-curvature
coordinates, using the notation herein, is given by

TG+ Cle]+ )+

Ko Ky o o 1/ o
R1 + R2 _K11K22+Z(K12)

(35)
2 o I 1 o o 1 _
- KKy — KKy + §K12K12 =0

where
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2] 0 [10A, L], 9[A sl 10A, 3
eh|=-—|-"———c¢ — ————¢
el =" Ge a8, ©| "o | A, e, T AL, O (362)

PR RAME BV N LY -
A7 G AL ae, | AR A e, T AT, (360
o7 _ i l (:)Y(;Z L aAl o a l aY(;2 L L‘AZ o
&.lv)= a§1|2 oz TAL Y”] aaz|2 9, TAL Y”} (369
< :_LL(L%)_%BAI oW, (37a)
AL 95| A 58, | A (AL 08 O,
U (L"’WI)_%‘?AZ ow (37b)
A, 98,| A, 98, AL(A) 08, 0§,
oo A0y aw) A 0 g ow (37¢)
PTOAE (A, 98] ALOE|(A,)

Equation (35) gives the necessary and sufficient conditions for compatible displacements in a
simply connected domain. For a multiply connected domain, single-valuedness of the
displacements around each curve enclosing a cutout must be enforced, in addition to equation (35)
to have compatible displacement fields.

Nondimensional Fields Equations and Parameters

The nondimensionalization procedure used herein follows that given in references 60 and 61
for symmetrically laminated shells, modified to accomodate generally laminated shells. In
particular, the only differences in the equations for symmetrically laminated and generally
laminated shells appear in the constitutive equations. The underyling premise of this procedure is
to make the field variables and their derivatives quantities with magnitudes on the order of unity,
to minimize the number of parameters required to characterize the behavior, and to avoid
introducing a preferential direction, or bias, into the nondimensional equations. This approach is
intended to enable one to assess the relative importance of terms in the nondimensional field
equations, and to provide a means for rationalizing similar response characteristics of shells with
different material composition and geometry. Based on this approach, it follows that it is
convenient to define the nondimensional normal displacement W for a generally laminated shell

-1
alsoby W =[a,a,D;D,,] *w. In addition, to facilitate nondimensionalization of the Donnell-
Mushtari-Vlasov equations, it is convenient to introduce the nondimensional arc-length Gaussian

coordinates (z,,z,) of references 60 and 61 givenby & =Lz, and &, =L,z,, where L, and
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L, are characteristic dimensions of the reference surface that can be picked to faciliate solution of
a specific problem. For these coordinates, the surface metric coefficients A, and A, are equal to
unity, which greatly simplifies the shell equations. In the analysis that follows, it is presumed that
the shell stiffnesses defined in equation (16), and the corresponding compliances, are independent
of the (§,&,) surface coordinates. Unlike previously published studies on nondimensional
parameters, a complete set of nondimensional field equations are presented subsequently.

Nondimensional Kinematic Equations

First, consider the rotation of the reference surface given by equation (11a). Introducing the

_1
nondimensional normal displacement W =[a,a,,D,,D,,] * w and the coordinates (z,, z,) into
equation (11a) gives

‘ -

B,=- [auazzljnl)zz]‘]T %\Z’\l] (38)

=

Defining the nondimensional rotation as

-

Ql = BlLl[allaZZD]]DZZ] (39)
yields
Q =W (40)
0z,
Similarly,
Qz = BZLZ[alla22D11D22]_% (41)
and
Q=W 42)

" 9z,

Likewise, introducing W = [a,a,,D, D,,]

Bl—

w and the coordinates (z,, z,) into equation (8a)
gives

oy 2 2 2

ry Berrs b v e a0 LA RE s
[allazzD|1D22]2 [allazanDzz] : Rl[anazanDzz]4 ! ! !

o=

where W, = [anazzDuDzz]
defining a nondimensional strain E

Bl—

w, 1is a nondimensional initial geometric imperfection function. By

.;» a nondimensional displacement U, given by
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ul, (44)
[allaZZDllDZZ]

U,

=

and introducing the Batdorf-Stein parameter, previously defined in references 60 and 61, as

2 2
Z = L, 1: (L_) (E) h | (45)
‘/ﬁRl[anazzD11])22]4 Rl & */ﬁ[auazzDanF
equation (43) is expressed as
oy 2 )
E,=—tubn 93U, MZ,W+%(5W) + IW IW, (462)
I:anazz])nDﬁ:lE 9z, 92, 9z, 0z,
Similarly,
o 2 >
E, = gL, - ou, + mzzw 4 %( ('JW) + AW oW, (46b)
[a,2.D,D,]° 7% 0z,) 0z, 9z,
G o Tebl. _9U, U, gWaW , OW,aW , dW, oW (460)
" [a“anD”Dn]% 0z, 0z, 0z, 0z, 0z, 0z, dz, 0z,
where
U= Wbk (47)
2= L
I:a'lla22D]]D22:|2
and
2
L, T h (48)

2 (&)%)
2= 1 1
VIZR,[a,a,,D,D,]" R/ VP /| Vi2]a,a,D,D,.]°

Furthermore, similar nondimensionalization of the bending strains given by equations (9) yields

oy 2 2
z K||L| __GW (49&)

11 -

T 0z
[anazanDzz] !

0o 2

z Ky, A (49b)
22 1 2
[allaZZDllDZZ]4 0z,
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K?leLz azw

=2
s 0z,0
[anazanDzz]4 #1022

z ., (49¢)

Nondimensional Constitutive Equations

In deriving a set of nondimensional constitutive equations, it is desirable to keep the number
of parameters that characterize the material behavior to a minimum. To achieve this goal, and to
bring clarity to the nondimensionalization procedure, nondimensional constitutive equations
symmetrically laminated shells are derived first. With these baseline constitutive equations
established, the approach is extended to obtain nondimensional constitutive equations generally
laminated shells. The guiding principles for this second case is to develop nondimensional
constitutive equations for generally laminated shells with as few new nondimensional parameters
as possible and that retain the nondimensional parameters for symmetrically laminated shells as
an explicit subset. For example, Khot and Venkayya® define several nondimensional parameters
for generally laminated shells in terms of the "reduced" bending stiffnesses defined by equation
(21c). With their approach, the nondimensional parameters for symmetrically laminated shells do
not appear explicitly. The signficance of this difference will be indicated subsequently.

Symmetrically laminated shells. For this class of laminates, the first partially inverted
constitutive equation appearing in equation (20a) reduces to

8(1)1 =a,N, +a,N,, + a]lez (50)
2 _
1

Multiplying this equation by L)[a, a,,D,D,,] * and using equation (46a) gives

E, = L21 a N, +a,N, + allez (51)
[anazanDzz]2

This equation, and the others that follow, are simplified further by using the parameters

L, (a_) (52a)

=2t e (52b)
2 Valla22

== A2 (52C)




6 = i (52d)

3
[a%ax]

PN

previously defined in references 60 and 61 and by introducing the generalized Poisson’s ratio
associated with membrane action defined as

v e An (52¢)
yvapdy
That is, equation (51) becomes
2 2 2 L 1 2
E, =ﬂ:_ N, L, — v N,,L, —3'52% _I(Dzz) N,L, (53)
2 2 m 2 174
a, v 4D, D, " v/D,Dy, %y LoDy, J1:2[])111)22]

Equation (53), and others that follow, are simplified further by introducing the nondimensional
stress resultants

7, = Nul (54a)
2
m vD,D,,
2
7, = 2 N/—‘22LI (54b)
T D11D22
7, =—Nela (54¢)

_L: (D, (55)
*EL (D)
Specifically, equation (53) becomes
of 1
E,=xn (_z AT %22_%ﬂ) (563)
o, a, o,

Similarly,

35



7 ) (56b)

_ 2 2 12
EZZ—TC (— Vi 7{11 + o, %22 —OyYm o
b

0
G,zznz(__m%“ - Y %22+2(u+vm)a—‘2) (56¢)
m b
Next, consider the constitiutive equation (see equation(16))
M, = DIIK(II + D12K22 + chK(;z (57)
Using equations (49) and multiplying by Lzz[a“aanlD;]_Z gives
2 2 % 2 2 2
M, L, - _ E(Dn) 6W+ D, 8W+2 D L, J W (58)
\D,,) 9z;  D,D,, 0z VD, D,, L, 92,07,

1
33177 L
[anazanDn] !

Equation (58), and others that follow, are simplified further by using equation (55), and by using

the parameters f, y,, and 9§, defined in references 60 and 61 as
(59a)

D, + 2D

b= b,

(59b)

_ Dy (59¢)

0, = T
[D,Ds,|*

In addition, a generalized Poisson’s ratio associated with anticlastic bending action is defined by

D, (59d)
Vy = ———
D11D22
Specifically, equation (58) becomes
. = M“L22 - W v 3w + 20 3w (60a)
11 = % - b aZT b i be azlazz

3 3
a,,2,,D],D;,]

36



Similarly,

2 ) , .
wzzshllz_(vbavy_k%avy*_ziai?;)
[allazzDiDzzr 0z, o, 09z, o, 072,07,
M_,L L 62W ) (:)ZW azw
%12 = % = - (Othb aZ2 + (‘L_h azz + (B - \/b) (')Z aZ
uD; 104,
[a“anD,lDzz] 1 b 2

Now, equations (56) and (60) have the matrix representations

1 5.
Ot_zm ~Vn - O(-_m %11
E
1 ,
E, =xn -V (O —OnYm 7,,
G, ”
0, %,
o oYe 2(n+v,) o
2 3w
a’b Vb a’be ?
", L s 82z1
My == Vv - =
7%22 b Oti a, i
12
5, B-v, 3w
QoY o 5 02,0z,

Generally laminated shells. For this general class of shells, consider the constitutive
equations given by equations (20a) written in the form

° o
€ Ay a1, Ay lel\ a, 8,8, | BuBinBi|[K),

° o
€y = |88y 8y |\ Ny p = a8y 8y || B, By By [{ Ky

5 o
\le A6 Ay des \Nm / A6 Ay Aes Bm B26 B66 K

(60b)

(60c)

(61a)

(61b)

(62)

by using equations (21). To obtain the desired additional nondimensional parameters, equations

(46), (49), and (54) are expressed as
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) # 0 0
i T [ (©3)
8;2 = [alla22DllD22]2 0 % 0 E,,
\YTJ L, \an
o o 1
LiL,
L 0 o
K?l 1 L, /Kn (64)
KZz = [a11a22D11D22]4 0 L2 0 2
K f L, \m
o o 1L
L.L,
Lz 0 0 7{11
f N, L,
2
Ny, =7 yD;Dy| 0 % 0 7% (65)
\Nu L,
0o o0 || 7%
L.L, I o,
With these expressions, matrix equation (62) becomes
) Lz 0 0 7¢11
fEll J'li2 L, 02 0 A, A A L, |
E22 =T 0 L, 0 A; Ay Ayg 0 2 0 %22
\G]ZI Andda 0 L,L,| %6 a2%as L, |
0 0 KV
LlLZ ] (xb (66)
, L 0 o
1 L, 02 0 a, a,a,| B BB L, 1 /le\
- —% 0 Lz 0 A, Ay Ay Blz Bzz B26 0 2 0 zzz
[anazanDzz] 0 0 L L,|[L%s s s B By B N 1 \Zuf
0 0
L.L,

Inspection of equations (61) and (66) indicates
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1 4,
< T :
" ) 1 Ll 02 a; dp Ay
~Vn Ay — OV |/ 0 2 0 Ajp Ay Ay
N dndy 0 L,L Ajs Ay A
-— -0 2(w+v
(Xm mYm (M m)
Using equation (67) and the identity
L 0o o ,
A, dp dg a; dpadg L, 1 L. 02
A Ay Ay | = | A Ay Ay 0 2 0 0 L,
A Ayg Agg A Ay Agg L, 0 0
o o 1
L.L,
with equation (66) yields
1 b
T2 ~Vn - %11
o, m
fEI]\ , , €, ¢
E, = ™ Ay, —OyYm || 7, —-|€.,¢
\G.zf 5 ¢, ¢
S0 gy, 2wy, | | 2o
o, a,
where
: A
b, 6,6 a.a 1 L, 0 0 B11B12B]6 L,
2
€6, 6y =[#} 0 L, 0 B12 B22 Bze 0
€666 e 0 0 LL, B By B 0
or
L L,
anzz B, Bmf
1
K” gl2 416 i ] 2
a;a L L
€26, €y =|:DHI)22 :| B, Bzzizl Bzéfl
gm éze 466 11 22 L2 2
L L
BléﬁB26i B
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(67)

(68)

(69a)

(69b)

(69¢)



Now, consider the constitutive equation

fM“ B,B,B,|[¢ D, D, D, /KTI
MZZ = BIZ B22 B26 822 + D12 D22 D26 K22 (70)
\Mm B16 B26 B66 Y(])z D16 D26 D66 \KIZ

To obtain the desired additional nondimensional parameters, equations (60) are used to get

L 0 o
IMH 1 L, ]%11
3.3 (71)
M, | = [3111322])11])22]4 0 L2 0 s,
\LMIZI Ll \%12
o o 1
L.L,|
Using equations (63), (64), and (71), matrix equation (70) is expressed as
) L 0 o0
/%11\ a2 iy Lo 02 0 B, BBy L, /En
\7%22/ = [D“D22 } 0 L, 0 B, B, By 0 # 0 \En/ +
1t
o, 0 0 LL, B By B 0 02 . IL 12 (72)
1~2
) L 0 o
1 L 02 0 D, D, Dy L, fzu\
ﬁ L1 0 D12 D22 D26 0 # 0 Kzz
20 0 LL, D Dy D ? 1 \Kn/
0 0 L L
12 ]
Inspection of equations (49), (61), and (72) indicates
Oy Ve Oy ) 10 o
S L, 0 0 D, D, Dy L,
Vi L — = Dl D 0 L21 0 D,, D,, Dy 0 % 0 (73)
(03
5 b P20 0 LiL,||PuDx D b
Yy : 0 0 T
Ay, 2 | bz |

Thus, using equations (69b) and (73) with equation (72) yields

40



N N N
IS
N N\ N
S

where

are defined as load-path eccentricity parameters. The partially inverted form of the

N N N

[
=N

A Oue; € Ane s
_ €n €2
= €
amab 0'm
26
A6 €66
m

E11 211
0
{gzz} + Vi é OTb {zn}
1 b b Zl
’ sy BV ’
AypYy o 2

1

alla‘22 ¢
e = B | ——=
o 66|:D11D22

(74)

(75a)

(75b)

(75¢)

(75d)

(75e)

(75%)

(75g)

nondimensional constitutive equations derived herein is obtained by expressing equation (69a) as
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where

=)

0 o o)
0 o o)

Using equation (75a) gives

=N

=N

N N W

>

0
-V == 7111 aa;y
" 3’11 glz gl6 82“][
Ay — 0V % + |8, 8y &y azz
7 B, 8,8 622W
- Ym 2(u+v, = 2
Yo 2(0+v,) o 92,02,
1 O
) “Vm T o
(O m
€, 6,6
= -V, o, — OV |[€nénby
5 €156 b
- - 2(un +
(Xm G'm’Ym (u‘ Vm)
(03
Z, ?b e = Vmen =0y e

Vmam
g,= _2(512 - T en =90, 326)

(O b

p—

(616 =V €y — 6m 566)

2 VO
321 = Otm(elz - € — Ymel())

1 amYm
?62=a—m(2(u+vm)e26—6m612— a ezz)
?66 = 2(“. + Vm)ess - 6m €16 — Ym €2
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(76b)

(77a)

(77b)

(77¢)

(774d)

(77e)

(775)

(77g)

(77h)

(771)



where it is noted that all of equations (77) vanish for symmetrically laminated shells. Now,

substituting equation (76a) into equation (74), and using equation (75a) yields

2
7, %W
VA
/%11\ ) gl] gz] ?61 ‘411 d12 416 az\hll
M, =1 |8,8,8, 7,, — | Ay do P 2
\%12 glé gzo gso "{16 426 ’lee Z 2
%, I W
a, 02,0z,
where
2
ay Voo Ol OOty €pp Onei6
dydidyg | S . . g,
dy dydy | = Vi ? OTb - €n a 2(21 a_zs g,
de de des 6b B _bv e " Z,
Yy L 5 - Oueyy  — €66
b m

In expanded form,

m m

) ) 2|4 oV, 2 a,0,,
d, = Oth(l - e“) + am[Z (; e e, —€,+ 2((‘; et Ymepn

412—Vb+vm("311622+612)_ e, + €y |e T O €€y t€eis
o o (03

m b m

am
Ym(a €€n t 512526) - 2(“ + Vm)eme%
b

4= ah[Yh + ( 6m €5 — €16 TV 526)311] + am[Ym €o5 — €2 TV 516]512

+ am[ém €t Vm € — 2(“ + Vm)eee]ele

b b

amvnl amYln
%(1 - eiz) + —12 |2 et — e + 2(
o, a o

L[61» + (Yme66 T Ve~ 526)522] + al[ém €6 ~ €16 T Vm 626]512

b m

+ o%[a“‘ €6+ Ve — 2(W+ Vm)e()()]e%

m
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s

}M_AM+VJ;4

J+

eyt 6m 612)626 - 2(“ + Vm)e;]

=N

=N

(78a)

(78b)

(79a)

(79b)

(79c¢)

(794d)

(79¢)



Ao = %(6 - Vb) - 2(M + Vm)ezs + 2V, e16€26 — 5?6 - 326 + 2(6m €t Vm 526)%6 (79f)

Equations (76a) and (78a) define a set of partially inverted constitutive equations that are
expressed in terms of the nondimensional parameters defined in references 60 and 61 for
symmetrically laminated shells and six new nondimensional parameters defined by equations (75)
that characterize the anisotropies associated with coupling between membrane and bending
deformations. This formulation is different from those used in references 18-20 and 71 in that all
of the nondimensional parameters are defined in terms of the stiffnesses appearing in equation
(16) and not the reduced stiffnesses appearing in equations (20b), defined by equations (21c). The
utility of the formulation presented herein is revealed by inspection of equations (77) and (79);
that is, the equations contain the fewest number of parameters needed to characterize fully the
load path eccentricity associated with subscripted b-terms appearing in the constitutive equations
given by equations (20). Moreover, equations (77) and (79) show explicitly the coupling between
all forms of orthotropy and anisotropy that can occur in a generally laminated shell.

Nondimensional Equilibrium Equations

In this section of the present study, nondimensional equilibrium equations are obtained by
direct nondimensionalization of the equilibrium equations given by equations (29). Specifically,

introducing the coordinates (z,,z,) into equation (29a) gives

1 ON, 1 9N, (80)
L, 9z, +L2 0z, q:=0
Multiplying by Lle2 and using equations (54) gives
n°yD,D,,
%, 1 7%, _ (81)
0z, +Otb 9z, +9.=0
where
g o ALl (82)
=
n° yD,D,,
Similarly, equation (29b) becomes
1 0%, | 0%y _ (83)
a, 0z, + 9z, +9,=0

where
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q.LL, (84)

$=T
" 7DD,

Next, introducing the coordinates (z,,z,) into equation (29d) gives

1 M, 1 M, 4 _ (85)
L, dz, L, 9z, Q=0
Multiplying equation (85) by L lez[al,anDT,D;]_Z and then using equations (60) gives
87%11 + %_ 21 =0 (86)
0z, 0z,
where
2= QbL, (87)
|:21112122D:1;II)221|4
Similarly, equation (29¢) becomes
(88)

My Wy 2,20

0z, 0z,
where
2
2,2 QLL, (89)

3 3 14

|:a]]a22D1]D221|4

Likewise, introducing the coordinates (z,, z,) into equation (29¢) gives
(90)

1 an 1 aQZ Nll N22
1 0%, 1 BEA TR E S )
L oz, 'L, 09z, $TR, TR T

and using equations (87) and (89) gives

-

Multiplying equation (90) by LZILZ[al.anDT.D;]i
oD

92, 92 22 Dt
6Z11 + 6z22 +73+L1L2[311322D“D22] 4(Pm_ R, R,

where
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2_2
LL
T ©2)
a,,2,D},D.,]

Next, using equations (45), (48), and (54) with equation (91) gives

d d
ﬁﬂLﬁﬁL%_nz,ﬂz('ixzuzl +7,7,) + P, =0 (93)
9z, 9z,
where
2 2
p o RLL. ©4)

1
%

3 3
[allaZ2DllD22]

The specific form of 2, is obtained by first introducing the coordinates (z,, z,) into equation
(30), which gives

P = Llaizl([[sl + ﬁ‘l]N” + [[32 + ﬁL]le)]

(95)
1 a I 1
- L_za_Zz ([Bl + BI]NIZ + [ﬁz + Bz]sz)]
By using equations (39)-(42), (54), and (94); and noting that
1 i OW, (96a)
Bl - Ll[alla22DllD22] aZI
o1 P 0w, 96b
Bz - L2[311322D11D22] 822 ( )
equation (95) yields
2, =07, L (W +W,) +EL(W+W)
" dz,[ " az, Y o, 0z, ! ©72)
a
el %20 (W w) e, (W W)
d0z,| o, 09z, ! ? 0z, !

Expanding the derivatives of the bracketed terms and using equations (81) and (83) give the
alternate form
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P =- nz[%&izl(w +W,) + %aizz(w i WI)] (97b)
2 2 :
%12

+ 7|7 a—(W+W)+7¢ a—(W+w)+2—
11 a 2 I 22 aZ; I ab aZIaZZ

(W+wW,)

Z,

Nondimensional Boundary Conditions

In terms of the nondimensional coordinates, the boundary conditions are defined at the edges
given by constant values of z, and z,. On the edges givenby z = a,/L, and z,=b,/L,, the
boundary conditions given by equations (33) become

N(z)L, __ AL ) (98a)

S(z,)L. - A,(z,)L _
Ho= 50y or U= 5 (98b)
2 3 %
7T [DIIDZZ] [allaZZDllDZZ]
2 V(z,LL,
2, + M v, i(W + Wl) + 7, i(W + WI) = V)t - =V(z,)
0z, Z, a, Z, 3374
[allaZZDllDZZ]
A _
or W= # =A,(z,) (98c)
[a,a,,D,D,,]"
M(z,)L _ _
7”11 = # = M(Zz) or -— %? = q)(ZZ)Ll T = (I)(Z2) (98d)
|ialla22D?1D22j|4 1 I:a']la'22DllD221|4

where 2, is given by equation (86). On the edges givenby z,=a,/L, andz,=b,/L,, the
boundary conditions specified by equations (34) become

_ _Nz)L, _N(z) or U= zls g (992)

| S _
7., S(Zl) 32 = S(Z,) or U, = AI(ZI)Ll = A](Zl) (99b)
J'EZ[D“DZZ] [a11322D11D22]2
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, V(zLlL,
2oe P (W W) (W) =
1 b ! ? [a11a22D?1D22]4

or WzL)LEKn(ZI)
[311322D11D22]4
M L2 _ d(z, L -
7%22=(Z—1)'IEM(ZI) or —‘?Ql: 2L = D(z,)
2

3 34
a11a22D11D22

where 2, is given by equation (88).

Nondimensional Compatibility Equation

(99¢)

(99d)

Nondimensional compatibility equations for geometrically imperfect shells are obtained by

introducing the nondimensional arc-length Gaussian coordinates (z,, z,) into equations (36) and

(37). This step gives

2 o
o d
é“[sn]z% E]I

L, azi

2
d°es,

1
L, 9z,

C.le]=

2 .
o7__ 1 9%
é‘z[yn] ~ L\L, 92,0z,

2
I _]aW]

2 9w,
L.L,0z,0z,

I
Kp=

Using equations (100), it follows that the first three terms of equation (35) becomes
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2 o 2 o

2 o
1 / ©° ©° °\=L6811 Laszz_ 1 6Y12
A A NG e+ Colen]+ C L] L T e (0

and using the definitions in equations (46) with the previous expression gives

1
1 ° ©° o _ [alla22DllD22]2 azE“ (:)zEzz azGu
A.Az{é“[e”] - 622[822] + elz[yn]} B LL; 0z, * 9z, 02,02, (109

Similarly, substituting w, = [al,aﬂDllDzzﬁ W, into equations (101) and then using the results
with equations (45), (48), and (49) gives the second part of equation (35) as

o

o
KZZ Kll

o _ o 1 0 \2 o 1 1 o 1 o 1
R_+R__K11K22+Z(K12) _KIIKZZ_K11K22+§K12K12=
1 2
; : :
_[2aaDuDu]’ gl W, 9W (104)
LILZ 2 Z1
1 2
, [8,2:D, D" W | AW W aW oW, aW o'W, o IW 3w,
L'L) 02,0z, 9z, 9z, 9z, 9z, 0z, 0z, 92,0z, 92,0z,

Substituting equations (103) and (104) into equation (35) gives the nondimensional compatibility
equation

2
OE, 0E, 9G, /i3 3w AW\ oW oW [ oW
>+ 2 = VI2|Z, >t 4, 2 2 2
9z, dz, 02,0z, 0z, 0z, 0z, 0z, 02,0z, (105)
LIV aW, AW oW, aW o'W,
oz, 9z. 9z, 0z, 02,0z, 92,0z,

Nondimensional Virtual Work

A nondimensional form of the principle of virtual work given by equation (22) is obtained by
by first taking the variation of the nondimensional displacements given by equations (44), (47),

and the definition w = [a“azzDHDnr W ; and strains given by equations (46) and (49). This step

produces

du L, (106&)
[allazlelDZZ]

oU, =

—
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ou,L, (106b)

U, = .
[allazlelD22]2
W= OW (106¢)
[alla22D11D22]4
o 2
6E” = 6811]—41 T = aaagl + s/ﬁzl 6W+ (%\ZV + aa\;]l)aaézw (1073)
[311322D11D22]2 ! 1 1 1
oE, = deala U, sy s (aw . awl)ag,w (107b)
[a“anD“Dn]E 0z, 9z, = 9z, | 0z,
5G, = Jrukiks 00U, 30U (oW oW aow  (aW , oW )adW (107,
o [a a,D, D ]% 9z, 0z, dz, 9z, ) 0z, dz, = 9z, | oz,
11¢422 11 22
5k L 2
63{’11 = T=— 9 6\27\] (108&)
[a,]a22D11D22]4 0z,
o 2 >
0%, = oKL, _=_9 OW (108b)
[allazlelDzz]4 0z,
oK'\, L, 38w
Ropm — — 1 =2 (108¢)

T T 9z,0z
[a]]a22D11D22]4 ! 2

Using these definitions and the definitions in equations (54) and (60) with the internal virtual work
per unit area given by equation (23a) and requiring the transverse shearing strains to vanish gives

7 oW, LiL,
[a11a22]5D11D22 (109&)

2

n
7%, OE, + o 700G+ W7y, OB, + W, 0%, + W, 8K\, + Mp, O,
b

Similarly, the external work per unit area given by equation (23b) becomes

oW, L'L, _ :
670@(1 =—————=ug, 0U, + 7y, 0U, +4,0W (109b)

1
[a|1a22]2D1|D22
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Multiplying equation (22) by gives the principle of virtual work in

T
[alla22]2D11D22

nondimensional form as

f f 5%, dz,dz, = f f 8%, dz,dz, + f 3%, de (110)
A A 04

where # is the nondimensional domain given by % <z, < % and E—z <z,< % , 04 denotes
1 1 2 2

the boundary of 4, de denotes the nondimensional arc-length coordinate for d-#, and where

L,L
f 62(/3l de = = SW.. ds (111)
el [alla22]2D11D22 oA

The explicit expression for virtual work of the applied loads acting on 04 is obtained from
equation (23c) as follows. From equations (38)-(42) it follows that

_ 1 1 90W

6[31 - Ll[auazanDzz] 0z, (1123)
_ 1 1 9OW

662—_ Lz[auazanDzz] aZZ (112b)

Introducing the nondimensional coordinates (z,, z,) and substituting equations (106) and (112)
into equation (111), and making use of the notation for the nondimensional boundary loads
defined in equations (98) and (99) yields

b,

L,

bl
) _ 2 _ _ WL

J' 570" do = ln N(z) 8U, + =-5(z.) 8U, + V(z.) OW - Mi(z,) 5= l dz,
04 ’ i
Ll

ext

5

(113)

&

b,

2 b.
_ _ _ . aow]L

+ l“—s(zl) U, +w'N(z,) 8U, + V(z,) SW - M(z,) l dz,
Ay 0Z, 15}
L,

R

Ly
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Nondimensional Stress-Function Formulation

The stress-function formulation of the Donnell-Mushtari-Vlasov equations is often used to
facilitiate solution of practical problems by reducing the number of unknown functions to two.
These two unknowns are the normal displacement w(g, &,) and a stress function F(g, €)). In
particular, the stress resultants N, , N_,, and N,, are defined in terms of derivatives of a stress
function such that the equilibrium equations given by equations (29a) and (29b) are satisfied
identically. As a result, the compatibility equation given by equation (35) must be satisfied.
Similarly, moment equilibrium equations (21d) and (21e) are used to eliminate the transverse
shear stress resultants in the force equilibrium equation given by equation (29c). In addition, N
and N, in the force equilibrium equation are expressed in terms of the stress function. Next, the
constitutive equations given by equations (20a), the bending strains given by equations (8), and
the rotations defined by equations (10), neglecting transverse shearing deformations, is used to
express the membrane strains in terms of w(g, €,) and F(g,, &,). Likewise, equations (20b) give the
bending stress resultants in terms of w(g,, €,) and F(g, &,). With these modified constitutive
equations, the compatibility equation and the transverse force equilibrium equation are expressed
as two coupled nonlinear partial differential equations in terms of the normal displacement
w(E, €,) and the stress function F(E, €,). A similar process that uses the nondimensional field
equations derived herein directly is presented in this section first. Then, the corresponding
expressions for the virtual work and complementary virtual work, are presented that are useful for
for solving boundary-value problems by direct variational methods. A similar similar approach
has been given by Zhang and Matthews® that uses the basic integral forms that are used to derive
the principles of virtual work and complementary virtual work (see Washizu®, pp. 18-32 for a
general treatment). In the last part of this section, simplifications to the stress-function
formulation are presented for cases of practical importance.

Field Equations in terms of W and 7

The nondimensional stress-function formulation is obtained by first using equations (86) and
(88) to reduce the number of independent equilibrium equations to three force balance equations
by eliminating 2, and 2Z,. This step yields

2 2 2
877{211 +2 a%lz + 877{222 +%—J‘E2~/ﬁ(7¢,,zl +%2ZZZ)+pm=O (114)
9z, 0z,0z, 0z,

for the force balance, in the direction normal to the tangent plane at a given point of the shell
reference surface, given by equation (93). Next, a stress function is defined that satisfies the

tangential-equilibrium equations, equations (81) and (83), indentically. Let 7 = Z(z,. z,) denote
the stress function defined by

7, =%_n2f g, dz, (115a)

Z,
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2

w7, =97 _ f .. dz. (115b)

0z,
J'l;2 ~ 827
oc_b%”__ 02,0z, (115¢)
such that equations (81) and (83) are satisfied identically. Equation (114) becomes
M SM, oM 37 97
142 2 4 24 - V2125 +Z2, % |+P, =7 11
azf 02,0z, azi % ( az§ ’ GZ? ) (1162)
where 2, is a known function given by
pT=—J'l32\/ﬁ(Zlf % dZ1+sz % dZ2)=PT(Zl,Z2) (116b)
In addition, equation (97a) becomes
P.==-D(W+W,)+ L7 W+W) (117a)

where @ﬁ is a linear differential operator defined as

D(W+W)= “zaizlu g, dz, aizl(w + WI)} + T‘zaizzu g, dz, aizz(w +w)|  (117b)

and £ is a bilinear differential operator defined as

2 2 2 2 2 2

9z 0 9z 9 07 0
L(Z,W+W,) = P azf(w+w‘)+a_zf azz(W+WI) -2 54z aZ16Z2(W+WI) (117¢)

The next step in the stress-function formulation is to express the partially inverted
constitutive equations, equations (76a) and (78a), in terms of the stress function. This action
yields
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N 0 oW
2 m 2
a‘m (x'm aZ 82
/E“ , 22 5’”?,2 g]g az“ll jﬁl\
E, ;= -V, o -0,V P +|%,, 8,8, pou; - {4 (118)
\G‘ 2Z1 & 8 By Z22 \'%f
- - 2 _
a, il 21+ V) 02,0z, 02,0z,
where
6m 2
07 ~ Vi - ai T 9 dZ,
| 2
L= -V, a 0¥ T f g, dz, (119)
5]
5. 0
- - amYm 2(“‘ + vm)
am
and
2 2
97 dW
azi 82?
/%11\ ’6’11 g21 261 827 411 412 dl(, azw /"”1\
%22 = 212 gzz ‘goz aZZ - 412 422 426 aZZ - \mzf (120)
\%12/ 8158 B az; Ao dys d g (292W e
2
02,0z, 02,0z,
where
ﬂ:zf % le
m, gll ’6721 gGl
wy ) =| B By B chf g, dz, (121)
m3/ B 88 0 f

Substituting equations (120) into equation (116a), and using equations (116b) and (117), give the
stress-function form of the transverse equilibrium equation as

DW)+ V12D (7)-D(7) = (122a)

2

0 m, 0 m,

2
0Z,

2
d
1(7, W+W1) _D,(W"i'wl) +g, - Pr— ( 821 +2 0z,0z,

where Db, @C, and @g are linear differential operators defined as
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o'W o'W o'W

Db(w) =d ﬂ+4dl6 a3—w +2(412+2466)T+4d26 —— 3 tdy 4 (122b)
0z, 07,0z, 07,0z, 07,0z, 0z,
3 3
D(7)=222+2°7 (122¢)
0z, 0z,
and
4 4 4
) d d
Dg(7) =8, 74 + (2226 - gél) 37 + (211 +8&y - 2366)%
0z, 02,0z, 02,0z, (122d)

4 4
7 7

+ (28 -7 +%
( ° 62)811822 . 8z3

Since the tangential equilibrium equations are satisfied identically, the tangential strains must
satisfy the compatibility equation given by equation (105). By using the operators defined by
equations (117¢) and (122c), the compatibility equation given by equation (105) is expressed as

2 2 2
0E, O0E, 0G, |
+ - = V12 W) -=22(W, W +2W,
p i S o PR 2 ) 34| ) (123a)

where, in particular,

2 2 2 2 2 2 2

1 _OWOW [ aW IW a'W, W a'W, W 9'W,

24 W W W) = Tz | o o e e dmomonen, (12
Substituting equations (118) into equation (123a) gives the nondimensional compatibility
equation

2Dnl(?) + Dg(w) — 12 DC(W) (124a)
2 2 2
1 _04 L0k  Op
+ 2,4(W,W+2WI) = + 2 92.d%,
where

3" 9" 3" o, 9 )

D(7) =222 420y, 27 4207 42 % 97 L OF (o)
0z, 07,07, 02,07, A, 0z,0Z, O, 0z,

Expressions for the tangential displacements U, and U, are obtained from the nondimensional
strain-displacement relations, equations (46); that is

au, _ l(awf IW W, (125)
0z, =E, - VI2ZW - 2\ 9z, ] = 9z, oz,
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oy, _ 1(aW) _ aW W, (126)
0z, En - VI2Z,W - 2( 822) "~ 9z, 0z,

U, U, 5 _oWIW _IW, oW _ IW, oW (127)
dz, 0z, 2 9z, 9z, 0z, 0z, 0z, 0z,

Substituting equations (118) into these three expressions gives

1 2 2 2 2 2 2
a_IL=Ta_?2_ ma72 67"1 a? +gna\y+glza\y+2gm 0 W
9z, o, 0z, 0z, O 02,0z, 0z, 0z, 02,0z, (128)
2
o _1{oW) _ oW W,
- VI2ZW 2(821) 9z, 0z,
oU, 37 .07 9’7 W o'W 3w
=-v, + a, + 0¥ m +& +& + 28, ————
iz, o o7 M az,0z, T M a2 T OB 0 T G0z, (129)
2
o _1{oW) _ oW IW,
£ = VI2ZW 2(822) 0z, 0z,
oU, oU, b, a7 0’7 )7 o'W 9w
Ly —2=--—" - OyYm -2(u+v, +Z +8, —>
9z, = 0z, o 97 n ’ () 02,0z, ~~° 9z] ® 0z, (130)
2
top OW AW W _ IW,9W W, 9w

% 92,0z, AT dz, 9z, 9z, 0z, 0z, 0z,

The nondimensional tangential displacements are represented in terms of W and 7, to within a
rigid-body motion, by the integrals of these three equations.

Next, the desired form of the boundary conditions are obtained by using equations (86) and
(88) to express the nondimensional transverse shear stress resultants in terms of the
nondimensional bending stress resultants, by using equations (115) to express the nondimensional
membrane stress resultants in terms of %, and by using equations (120) to express the
nondimensional bending stress resultants in term of W and 7. On the edges given by z, =
a,/L, and z =b, /L, the boundary conditions given by equations (98) become

0 72 = nZN(zz) + n2|f 91 dzl} or U, =A\(z,) (131a)
822 Z 1= constant
827 _ J_[:2 _ -
Gra = a Slm) or Ui=Aiz) (131b)
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3

3 3 3 3 3
0 d d d
gzl _73 + (28’26 - 261)2—7 + (‘gn - 2‘?66) 7 2 + 2216 _73 - 411 ﬂ - 4’{16 82_W
0z, 02,0z, 07,0z, 0z, 0z, 02,0z,
3 3 2
oW oW Jd7 2 d
- (412 + 4466)@ - 26{26 a—Z; + ( azz -1 f % dZ|)a—Zl(W + WI)
327 0 Om Om
= 1 3
- aZlazz 6_22(W + WI) = V(ZQ) + 8_21 +2 8_Z2
or W=A[(z,) (131¢)
2 2 2
Jd7 07 07 oW oW oW =
gn 8Z§ + gzl 3 2 61 GZIGZZ — P) ? -4y azi - 2dl6 GZIGZZ _M(Z2> + o,
or _ W _F(y) (131d)

On the edges given by z,= a,/L, and z,=Db,/L,, the boundary conditions given by equations
(99) become

3

3 ; s
°Z i 7 07 _,, O'W
28, —~% +(8,-28,|—Z—+(28,-8 +2 Y
" oz, ( : 66)82?822 ( ) 62)621622 * oz, * oz,
B (dlz + 40{66) a:W - 4d26 83W2 - d22 63W3 + 8272 - J'[Q‘f gz dZ2 L(W + W[)
02,0z, dz,0z, 0z, 0z, 0z,
827 a W W _ \—/ 8m2 2 am3
02,0z, a_zl( + 1) =V(z,) + oz, ¥ * oz,
or W=A,(z) (132¢)
9’ 9 9’ W W W —
g, 6Z7§ + &, 6?? 62 aZI(')?ZZ —-d, aa ? dy J Zz 2d 5 a(;lazz =M(Z1) + m,
or ¥ =(z,) (132d)

Virtual Work in terms of W and 7

The virtual work statement given by equations (107) - (110) is expressed in terms of the stress
function 7 and the displacement W by using equations (115) and the integration-by-parts
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formulas, equations (25), specialized for the nondimensional coordinates (z,, z,). In particular,

applying equations (25) to the terms % %_U ﬂ;27¢22 99U, ,and — 7112( aSZU + agg 2)
11 Zl aZ 2 1

2

appearing in 7’7, 8E,, , n' %, OE,, , and - %12 dG,, , respectively, and using equations (81),

(83), and (108) yield the variational statement

Jf {|g -7'V12 2,2, 0 J{%}]aw ~{m) (%)
A

(133)
T B B
_ nz[{g} + {QI}] [%]{6Q}>dzldz2+ 7 +9,=0
where
b,
L, h
9, = n[N(z,) - 7, [sU, +—[§( ) - %12]6U2+\7(22)6W—1\_/I(zz)—a(?Z\V dz, (1342
a, 711
L,
b,
L, h
’ s JIN < N A 134b
9, = a—b[S(zl)—%lz]éU,+n[N(z,)—%22]6U2+V(zl)6W—M(z1) ot (134b)
a, ©

where the subscripts and superscripts on the braces indicate the integrand evaluated at the upper
limit minus the integrand evaluated at the lower limit, and where

T 7.,
) =|m, n., .| (135b)
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7] = (e (135¢)
%]2
a_b 7{22
o\ = |- 9W _ oW 136
&y = 9z, 622J (1362)
T IW, oW,
o) = [-Z2™ _ 2%
&y =15z 822J (136b)
[so\"—|_ 90W _ 9dW (136¢)
10Q) = \ 9z, 9z, J
[s2\" | _ 9’dW _ 39’dW _ 9" 8W
0%y = 32’ 9z 2 az0z, (136d)
In particular, the last term of the integrand in equation (133) becomes
' d u d IOW
w[{(@) + (@}] [7)(02) = |7, (W + W)+ oo 7, (W + W) |20
2 (136e)
T d 2 d dOW
a—b 7, a_Zl(W + WI) + %, a—ZZ(W + Wl)w 9z,

Typically, the stress function is selected to satisfy the tangential boundary conditions and, as a
result, the boundary integrals reduce to

b,
L, b,
’ - _ W | b
9, = {V(Zz) dW - M(z,) 8—} dz, (137a)
a L
L,
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L, by
b _ L AdW | L 137b
9, = {V(ZJ@W—M(ZI) 7, }aZdZI (137b)
a, Lz
L,

T
(m) =[8] {37} +[<]{%} = {=} (138)
where
T | dW 9w oW
z\ o =- 2 - -2 13
{ } 0z, 0z 02,0z, ( 98.)

z
By (139b)
z

dlldIZdlﬁ
(] =, dy dy (139¢)
d16426d66
() =] s, (139d)
v o'z o7 9’7
[a\ T _ _
(07} = e R TR 72 (13%)

By using these equations, and noting that equations (115) give

{7y ={07) -n'{3) (140a)

{%>T=U 7, dz, f%dzz 0| (140b)

with

equation (133) is expressed as
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{|% -2z, 0 |{ (o7} - (5} ow - { (o) 81+ (=) T4 - )} (5%)
A
. ) (141)
_ [{Q} + {QI}] [[67] _ nz[%]]{ég}}dzldzz +9. +9,=0
where
7 97
[07]=| % 92,02, (142a)
i’ 97
02,0z, 97
fgl dz, 0
[5]= (142b)
0 f 9, dz,

Equations (141) and (137) constitute the virtual work in terms of the two unknowns, the stress
function 7 and the displacement W, and can be used as an alternative to equilibrium equation

(122a).

Complementary Virtual Work in terms of W and 7

The complementary virtual work is obtained by considering the work of incompatible
tangential strains and violated kinematic boundary conditions generated when the shell is
subjected to statically admissible internal stresses. The statically admissible stress resultants are

2
denoted by n’877*,, , 7’d7*,, , and 87, ; and as a result satisfy the equilibrium equations

b

a7, | 0dU*,

7z, a0z, =0 (143a)
| 97, N,
o 0z, + A 0 (143b)
the boundary conditions
o7*,, =0 (144a)
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87*,, =0 (144b)
on the edges givenby z = a /L, and z =b,/L,, and the boundary conditions

87*,,=0 (145a)

87*,, =0 (145b)

the edges givenby z,= a,/L, and z,=b,/L,. For this case, the nondimensional form of the
principle of complementary virtual work is stated as

B
ff SW* dz,dz, +d2W* =0 (146)
A
where
_ U, 1[oW | _ oW IW,| -
Sw* =|E, - i J—zw—z(azl) 9z 0z wn 877*,,
(147a)
oW oW IW, | >
+ En- - V12Z,W - 2(az2) 92, 0z, wn d7r+,,
U, dU, 9gwow W, oW IW, oW |xn
*|Ge- 0z, 0z, 0z, dz, 0z, 9z, 0z, Gzll %"
and
b,
L, by
Lp
| . |
S = \[UI—AI(Z,)] 87, +[U, - Az, )]né%*n/ dz,
b ay
a L2
oL (147b)

Using the integration-by-parts formulas, specialized for the nondimensional coordinates (z,, z,),
to eliminate the derivatives of the tangential displacements and enforcing equations (143),
equation (146) is transformed into
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f f 02" dz.dz, - 57* =0 (148)
A

where
2
YR 1[oW | _ aW oW, | >
dS* =|E, - VI2Z W - 2(az,) -9z oz wn: d7r*
2 149a)
1({ oW oW IW, | » (
+|E, - VI2Z,W - 2( 822) -9z, 0z, 175 /A
IW oW _ IW, gW  IW, gW [x”
*1Ge- 0z, dz, 0z, 0z, 0z, 0z, L(b 07" .
and
b,
T, by
~ B / J'C2 R 2
SH* = \[AI(ZI)]Q— 37, + [A(z,)|w'o7*,, | dz,
- (149b)
b,
L, by
+ \[Al(zz) o7, + [B.(z.) [ Z-o7,, | dz,
b ay

~ B
It is important to note that when only traction boundary conditions are specified, 374+ vanishes.

Next, a virtual stress function is defined such that equations (143) are satisfied identically; that is,

2
o, = 297 (1502)
0z,
o, = 207 (150b)
0z,
T e, = 07 (150¢)
o, 27" 9z,0z,

Substituting equations (150) into equation (149a) gives
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672*.{:({E}T— 2W|z, 7, o] - H{e} ([e]-2] Ql])){aé;’}

where

oW oW

“a, Y T

[Q]E W W
O =%z "z

aW, aw, |
0

0z, 0z,
[a]=| | _aw_aw
- 0z, - 0z,

T

(963 =
1097 =

82; aZ? B azlazz

9’07 967 067 ‘

and where {Q} is defined by equation (136a). Likewise, equation (149b) becomes

oy {[—2( 12 [a ) ;Zf;i}d]
L b
+ {[51(22) ]aaii? - [32( 2)](9(9?6632}2‘](&2

Next, equation (118) is expressed as
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(151b)

(151c)

(151d)

(151e)

(152)



{E} =[a]{97) - [B(x) - {£) (153)

where
(xfn " a,
la]=| -va @ -, (154a)
d,
- T 2ntvy)
(ﬁ) PR (154b)

and where (8], {97} ,and (%X} are defined by equations (139). Substituting equation (153) into
equation (151a) gives the desired variational principle

T T

s, = ({07} [a]- (x) (8] - (¢} - vI2W|Z, Z, 0]

. (155)
@)([2]-2a])){a)

=

Equations (148), (152), and (155) constitute the principle of complementary virtual work for
the stress-function formulation. Further integration by parts of equations (148) and (149), with the
virtual stress resultants given by equations (150), yields

~

2 2 2
0By B, 0'G, _ 1
o + o i, x/ﬁDC(W)+2£(W,W+2WI) 57dz,dz, +
o ‘/;4
Wb
L, by
/ < 0 6? a 6? 86? 1 86? laSIZ aszz \ l (156)
* \_ Aj(z) 9z, +Ay(z) %2420z, 5z gz, 2°°0 822 20z, 0z, 67} dz,
i o
YL,
L
Ly by
- Jd 67 6267 007 1 007 laSIZ 0S \ 2 _
* \_AZ(Z) 9z +4,(z) oz 622+S“az 251282l 20z, 0z, 67[ dz, =0
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where

’ W,
S, =E, - VIZZW - }{ O] _ oW I (157)
’ W,
Su =By - VIZZ,W - %( ‘32‘2’) N (1570)
S,=G,, - IWIW _ oW, oW _ IW, gW (157¢)

0z, 0z, 0z, 0z, dz, 0z,

and the integrand of the double integral is the nondimensional compatibility equation given by
equations (123) and (122c). When only traction boundary conditions are applied to the shell,
equations (144) and (145) must be satisfied by 7. This task is done by noting that only the second
derivatives of 87 are required to be unique in order to obtain unique stress resultants. Thus, it is

. .09
convenient to enforce 87 =0 on the shell boundary, to require a—; =0 ontheedges z, =
1

a,/L, and z, =b, /L, and to require %6;

these choices, equation (156) reduces to

=0 ontheedges z,= a,/L, and z,=b,/L,. For

1

2. 2 2
0E, O0E, 0G, — 1 _
ff Iz, " 0z, 02,0z, 12@°(W)+ 2‘4(W’W+2WI) 67dz,dz, =0  (158)
A

For the case of displacement boundary conditions, the boundary integrals in equation (156) can
be converted, by further integration by parts, into expressions that require satisfaction of the
tangential-strain-displacement relations and continuity of the displacements and their derivatives
on the boundary when the Fundamental Lemma of the Calculus of Variations is enforced.

Equations for Special Cases

Significant simplification of the equations for stress-function formulation can be obtained for
several cases of practical importance. For example, when the tangential surface tractions q, and
q, are negligible, the transverse equilibrium equation given by equation (122a) reduces to

DW)+ V2D (7)-D(7)=L(Z. W+ W,) +4, (159)
and the compatibility equation given by equation (124a) reduces to

D7)+ DW) - VIZ D (W) =1 L(w, W +2w) (160)
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Likewise, the boundary conditions on the edges z, = a, /L, and z =b,/L,, given by equations
(131), reduce to

97 —wN(z) or U =A(z) (161a)
0z,
07 _ T g &
GZ.(?ZZ a (0% S(Zz) or Uz 2(22) (161b)
97, 07 0’7 07 W o'W
gzl (2226 gm) 2 +(€ 2266) 2 +2?16_3_411 3 = 16 . 2.
azl 02,0z, 02,0z, 0z, 0z, 02,0z,
3
JW 37
—\dp+4dy )| —— - 24 + W+ W,
( ’ 66)8218z2 o azj z, 02, ( )
2
17 9
"~ 9z,0z, 622(W+W) V(Zz)
or W=A(z,) (161c)
)7 i )7 W IW IW =
gl 822 vE 9z, °' 9z,0z, “u 0z, e zz “o 0,0 _M(Zz)
or _ gzv =B(z,) (161d)

‘3?2' =wN(z) or U,=A,z) (162a)
Z]

07 W o _x
"G @ S(z,) or U, =A(z) (162b)

3 3 3 3
d d d d
2326 8_73 + (gzz - 2g66)2—7 (2316 g()2) 7 >t g 7 - 2d16 M

Z, 02,0z, 02,0z, dz, 0z,
2
(e 46{“)86??;2 - 4, % — %" ¥ 2; o wew)
2
836722 ai (W+ W) =¥(z,)
or W=A|(z) (162¢)
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2 2 2 2. 2 2
07 J7 07 oW oW oW v
2 +2 - - —d =Mz
12 azi 22 aZ? 62 aZlaZ2 12 82? 22 aZ; 26 aZlaZZ ( ])
or W — B(z,) (162d)

"~ 9z,

where the tangential displacements are obtained from equations (128)-(130) with £, =4, =£,=0.
For this special case, with q, = q, = 0, the virtual work given by equation (141) reduces to

~——
——
o
\
——

f f {|%_ 2|z, 2, 0J{a;}}fm-{{a;}T[a’]+{z}T[¢]
A

(163)

B

_[t@) + (@] Toz|(o0! dzdz, + 7 + 7. =0
J } \ /

and the complementary virtual work term given by equation (155) becomes

T

67%“1:({37} [e] - (=} [8] - v12W|2, 2. o] - 3{@) ([ ]-2| Ql])){(%?} (164)

When the tangential surface tractions q, and q, are negligible and the shell is symmetrically
laminated, the transverse equilibrium equation given by equation (159) reduces to

D(W)+ VIZD(Z)=L(7. W+ W,) +4, (165)
and the compatibility equation given by equation (160) reduces to
D7) - VIZD(W)+LL(W. W+2w,) =0 (166)

with the additional simplification

4 4 4 4 4
oW oW oW 3, aW . 1 W

D(W)=o, T + 40y, 2 42 LY 442 + =

b( ) ’ az‘f ol 82?822 b azfazi a, 82,622 OLZ 8221

(167)

Likewise, the boundary conditions on the edges z,= a, /L, and z,=b, /L, given by equations
(161), reduce to

0 7 — J'CZN(ZZ) or U] = Z](ZZ) (168&)
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97 =g_§(zz) or  U,=2,z,) (168b)

2
_(xb

3 3 3 3
IW oy 2N (2p v, ) LW % I W _
1 azlazz Ay, (:)Zz or W=An(22) (1680)
Jd

2 2
79 __907 9 v
* 9z: 0z, (W * W‘) 0z,0z, 822(W * Wl) = V(z)
2 2 2
29 W o 0W IW _ _0W _ 5 168d
a, p; Vy T = 20LY, 9297, =M(z,) oOr oz, D(z,) ( )

to

d 72 = J'EZN(Z]) or U,= Zz(zl) (169a)
0z,
2 2
iy W o -
=— U, =A\(z,
o= o S(z,) or (z,) (169b)
ay f_w_(zﬁ_ A 8% W 1 9W
oz Yoz.0z, % dz,0z, o 0z, or W=24,z) (169¢)
2 2
07 9 _ 97 9 v
+Z 6Z2(W+WI) T2 oz aZI(W+WI)—V(Z,)
1
2. 2. 2
L OW 1 W 508 W = _OW _ = 169d
v aZ? th, azi Zab 02,0z, _M(Zl) o 0z, _(I)(Zl) ( )

where the tangential displacements are obtained from

gU, 1 a7 a7 o, a7 oW oW aW, (170)
9z, ~ o’ 9z’ = Vn 0z’ Yo 92,0z, VR2ZW - 2\ 0z, | 09z, oz,
U, a7 .a7 3’7 1oW) _aWaW,  (171)
9z, " 97 e 0z T ntn 9202, VI2Z,W - 2\ 9z, ) 9z, 0z,
U, aU, 8,07 ¥ 07 _aWaW _ Wow _ oW aW (170
9z, + 0z, a, 9z, ~ Caln oz, _2(M+V’“) 0z,0z, 0z, 9z, 0z, 0z, 0z, 0z, (172)

The virtual work given by equation (163) reduces to
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(173)

B

[ial+ {QI}]T[87]{69}}dzldz2 47+ 9 =0

and the complementary virtual work term given by equation (164) becomes

T

622"2"[:({37} [«] - V2W|Z, Z. 0] - L{e}([2]-2] QI])){%?} (174)

Nondimensional Bifurcation Equations

Bifurcation analysis presumes the existence of a known continuous set of primary
equilibrium states, called the primary or fundamental equilibrium path, for a geometrically perfect

shell whose continuity is manifested by a continuously varying loading parameter p. In addition,
each primary equilibrium state is presumed to be governed by a linear boundary-value problem.
In the present study, each primary equilibrium state, determined by the specific value of p, is

©)

represented by the displacement fields 81(% z,,P) , %)z(zl, z,,P) , and W(z,.z,. §). Here, the
superscript (0) denotes quantites associated with the primary equilibrium states prior to
bifurcation. Bifurcation analysis also presumes the existence of a critical value of {, denoted by
p.. , for which one or more solutions to the corresponding nonlinear boundary-value problem

intersect the primary equilibrium path. Therefore, in the "small" neighborhood of a bifurcation,
the shell response is represented by the displacement fields

) )

U, =U, +¢U, (175a)
0) (1)

U,=U, +¢U, (175b)
0) (1)

W =W +eW (175¢)

where |e|<<1 and the superscript (1) denotes quantites associated with equilibrium states that
are adjacent to the unique primary equilibrium state at the bifurcation point, given by p =p.,. It

is important to note that although p =p.. defines a unique point of the primary equilibrium path,
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(O] (O] (1)

the displacement fields U,, U,,and W are not unique; that is, more than one adjacent

equilibrium state may correspond to the same value of p. . Bifurcation points of this type are

typically referred to as points of compound bifurcation.

Equations for the Primary Equilibrium Path

The rotation and strain fields associated with each primary equilibrium state are obtained

directly from linearization of equations (40), (42), (46), and (49); which gives

0)

©0)
S W

® o'W
R == 02,07,

(176a)

(176b)

(177a)

(177b)

(177¢)

(178a)

(178b)

(178c)

The corresponding constitutive equations are obtained from equations (76) and (78) and are given

by
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I(O)
0)
E22 =7 - Vm 0'm - a’mYm %22
) ©)
\Gn f 5 7.
- (X.im - amYm 2(“ + Vm) ab
and
0) 0)
I(O) 1 ) ?ll 321 gﬁl Zf” 411 dlz dlﬁ
75){22 =T ?12 222 g62 ?))22 - dl2 d22 426
\%nf BBy B 7., 416 42 Aos
a‘b

©0) ©0) ©0) 0)

5 ©)
JW
2
0z,
N0
JW
2
0z,
2.0

W
02,0z,

0)

O

dz,
2.0)

J W
0z,

XV
, I W
02,0z,

(179)

(180)

where 7,,, %,,, and 7%, are membrane stress resultants and 7,,, .,, and 7, are bending stress
resultants associated with each primary equilibrium state. The equilibrium equations governing
each primary equilibrium state are obtained from linearization of equations (81), (83), (86), (88),
and (93) and are given by

©0) ©)
Gt L e i g =0 (181a)
N, | O
aLbasz+aTzz+ﬁg2=0 (181b)
0) ©) o
% %_glz (181c)
1 2
0) 0) 0
%J,%_%z:o (181d)
1 2
02, 02
92, 9z, +f>%—n2~/ﬁ(%nzl+%zzzz):0 (181e)
1 2

) ()
where 2, and 2, are transverse shear stress resultants associated with each primary equilibrium

state and the surface tractions ¢,, 4,, and ¢, have been scaled by the loading parameter so that a
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unique solution is associated with each value of p .

The boundary conditions associated with each primary equilibrium state are also obtained
from linearization of equations (98) and (99), with the applied edge tractions and displacements

also scaled by the loading parameter p . Thus, the boundary conditions on the edges z, = a, /L,
and z, =b, /L, given by equations (98), become

©0) ©0) —_

%, = ﬁN(Zz) or U= ﬁAl(ZZ) (182a)
©) = 0) ——
2=P5(z,) or U,=pA,(z,) (182b)
©) 87(;){ 0) —_
2,+ 52 =pV(z,) or W=PAz) (182¢)
©) _ ©)
7= PM(z:) or - T = 5z, (182d)

)

where 2, is given by equation (181c). On the edges z,= a,/L, and z,=b,/L,, the boundary
conditions given by equation (99) become

) ©) —_

%, = ﬁN(ZI) or U,= f)AZ(Zl) (1833)
©) = ) ~—
2=0pS(z,) or U, =pA,(z) (183b)
©) ) ©) —
2,+ %2 _ () or W=pAlz) (183¢)
© o ©)
M =PM(z,) or _ gZV = $D(z,) (183d)

(0)

where 2, is given by equation (181d).

Equations (176) - (183) constitute a family of linear boundary-value problems whose
solutions depend on the loading parameter p and the relative magnitudes of the loads. The

relative magnitudes of the loads are given by the specific values selected for the surface tractions
4,» 9,» and ¢, and the edge tractions or displacements specified in equations (182) and (183). The
family of solutions is represented by
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©0) ©0)

U, = UI(ZI’ Z,, ﬁ)

©0) ©0)

U,= Uz(Zl» Z5, 1’3)

0) 0)

W =W(z,, z,, p)

©) ©0)

E, = EII(ZI’ Z,, 1’3)

©0) ©0)

E, = E22(Zl’ Z5, 13)

©) ©)

G,= GIZ(ZI’ Z,, ﬁ)

©0) ©0)

%, = %11(Z|’ Z,, ﬁ)

©0) ©0)

%, = %ZZ(ZI’ Z5, 5)

©0) ©0)

%, = %12(219 Z,, ﬁ)

©0) ©0)

o, = 7%11(21’ Z, f’)

©0) ©0)

w,, = 7%22(21’ Zy, ﬁ)

©0) 0)

., = 7%12(Z1’ Z,, ﬁ)

©0) ©0)

2, = ‘21(Z17 Z,, f))

©0) ©0)

z,= 22(Z1’ Z5, ﬁ)

which are generally transcendental functions of the loading parameter p .

Equations for Adjacent Equilibrium Paths
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(184a)

(184b)

(184c¢)

(1852)

(185b)

(185c¢)

(186a)

(186b)

(186¢)

(187a)

(187b)

(187¢)

(1882)

(188b)

The equations governing adjacent equilibrium paths at a bifurcation point of the primary
equilibrium path are obtained by substituting equations (175) into the equations for the nonlinear
boundary-value problem of the idealized, geometrically perfect shell, and then noting that all



resulting equations for the primary equilibrium path are satisfied identically. In particular,

substituting equations (175) into equations (40) and (42) gives

) )

Q =Q +:Q,

©0) @

Q=Q +:Q,
and substituting equations (175) into equations (46) and (49) gives

©) (€)]

E,=E, +¢E, + O[¢)

(] m

E,, =E, +¢E,, + O(¢’)

©0) )

G,=G,+&G,+0O(¢)

©0) 1)

Xy =%, +&X,

©0) 1)

Ry =Ry + Xy

©0) (1)

R, =%+ ek,

(189a)

(189b)

(190a)

(190b)

(190¢)

(191a)

(191b)

(191¢)

where the symbol O(¢’) is used to denote terms with magnitudes that are at most second order

in the small parameter €. In these equations,
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1)

) a1 (©0) (1)

U, N U, . gW oW

oW IW

27 9z, 0z, 0z, 0z,

(193c¢)

(194a)

(194b)

(194c)

Next, substituting equations (175¢) and (193) into equations (76) and (78) implies the expansions

and the constitutive equations

and

©0) a)

%, =%, +€e%, + 0(82)

©0) (1)

Wy =N, + €%, + O(€)

©0) a)

Nyp,=7,+ €7, + 0(82)

0) (1)

W, =W, + e, + O[)

(0) (1)

W, =W, + €%, + O[€)

©0) (1)

M, =, + e, + O€)

0
~Vn - am o)
m %11
, o)
A, - CX‘mYm %22

=Y 20+ Vi) || q,

76

L (D

0z,

5 (D

a W
0z,

5, ()

JW
02,07,

(195a)

(195b)

(195c¢)

(195d)

(195e)

(1951)

(196)



/—/%\
NG
3
o oy o
N 0 0
0\);;30\)

(1) 1) (1)

5 (D

oW

) 2

7, 4. d,d il

) 11 %12 %16 82W

(%1)22 - 412 422 426 azz

@ dlf) d26 d66 2 5 (D

o ) OW
02,0z,

(1) (1) (1)

(197)

where 7,,, %,,, and 7%, are membrane stress resultants and 7,,, 7 .,, and 7, are bending stress
resultants associated with the adjacent equilibrium states. The equilibrium equations governing
the adjacent equilibrium states are obtained by substituting equations (175¢) and (195) into
equations (81), (83), (86), (88), and (94) and then enforcing equations (181) and neglecting terms
of second order and higher and nonlinear terms associated with the primary equilibrium states.

The resulting equations are given by

1)

1)

07, 1 7, =0
621 a, aZZ
7, %
L 12 22 __
o, 0z, * 9z, =0
) (1)
My My G
aZI aZz b
My | M, )
12 22 _ —
0z, * 0z, 2. =0
Wll + azj — J'[z m(%llzl + %2222)
zi oW | 4, W Ow  f12 OVV
+ T 3z, %, 0z, o, 0z, + 7, 0z, + a, 0z,
(7(2 0 o ) % ©)
29 |%n oW oW | Zn W
+ 7T azz ab aZ] +%22 8Z2 + ab aZl +%22

where it is noted that

1)

2,=2,+e2,+0(¢)
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(©0)
o aW

0z,

=0

(198a)

(198b)

(198c¢)

(198d)

(198e)

(199a)



©0) (1)

2,=2,+¢2,+0[¢') (199b)

1) )
such that 2, and 2, are transverse shear stress resultants associated with the adjacent equilibrium
states. The loading parameter enters the equations for the adjacent equilibrium states through the

©) ©

displacement W and the membrane stress resultants 7., M, and 7,,. To further simplify

matters, sometimes it is presumed that the pre-bifurcation displacement W is mildy varying such
(0)

that the corresponding pre-bifurcation rotations, given by the derivatives of W in equation
(198e), are negligible. For this case, equation (198e) reduces to

1) 1)
)

92, 92 ZJ—(%HZ +%ZZ)

0z, azz (200)
) ©) O] ) O] )
0 |z W T oW | 29 | OW 5 OW|_
é’zl " azl o, 0z, dz,| o, 0z, 29z,

Expanding the derivatives of the bracketed terms in this equation and using equations (198a) and
(198b) give the alternate form

(1) (1)

()] (€)]
02, , 02, _ > 1z 0 aW . 9W
0z, + 0z, (%“Z + 7L ) pr’ % 9z, t 9 0z,

(200b)

5 (D © 5 (D

2|9 aw 9 aw %, OW |_
+ 7|7, + 7%, +2 -2 a, 20z A

1

Setting Z, = Z, = 0 in this equation yields the bifurcation equation that is comonly cited for
buckling of flat plates.

The boundary conditions associated with the adjacent equilibrium states are also obtained
from equations (98) and (99). In particular, substituting equations (175), (195), and (199) into
equations (98) and using equations (182), the boundary conditions on the edges z, = a, /L, and

z,=b, /L, given by equations (98), become

(1) )

7%,=0 or U =0 (2013)

(1) )

%,=0 or U,=0 (201b)
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(1) (1) ©) ©)
UMy 0 oW Y GW L b aW Y aW
+ % —%,2—+n7¢”—+ %, S

0z, 0z, 0z,

(1)
S =0 W=0
3z, iz, T, or (201¢)

W (1)

#,=0 or IW _g (2014)

dz,

(1) ) )
where 2, is given by equation (198c). If nonlinear pre-bifurcation rotations 2, and Q, are

neglected, equation (201c) reduces to

(1) (1)

o m 2© L) 3
2+ %02 q %%—W 7, 9W =0 or W=0 (201e)
2

Similarly, on the edges z,= a,/L, and z,=b,/L,, the boundary conditions given by equation
(99) become

(1 (1)

#2=0 or U,=0 (202a)
1) )
#.=0 or U,=0 (202b)
(o) a';;{lz O GW , © 6W o 6W L0 6\?’ o
2,+ —— a9z, +—b%126_zl+75 %, 9z, +—b%126—Z1+J‘IZ %223_Z2 0 or W=0 (2020)
Z A
My=0 or Y -y (202d)
0z,

1)
where 2, is given by equation (198d). If nonlinear pre-bifurcation rotations are neglected, then

equation (202c) reduces to

)
) o 2 , © 0
2 oW W -0 or W=0 (202¢)

Inspection of equations (189)-(202) indicates a system of homogeneous differential
equations and homogeneous boundary conditions that depend on the loading parameter p through

(0) ©0) ©)
the displacement W and the membrane stress resultants %,,, 7,,, and 7¢12 , generally in a

transcendental manner. Thus, the equations for the adjacent equilibrium states constitute a
nonlinear boundary-eigenvalue problem.
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Variational Principle for Bifurcation

A variational principle for bifurcation is obtained by noting that equations (198a), (198b), and
(198e) represent pointwise summations of internal forces in the three coordinate directions, for
the adjacent equilibrium states. Likewise, the traction boundary conditions in equations (201) and
(202) represent pointwise summations of internal forces acting at the edges given by constant val-
ues of z, and z,, respectively. Thus, a statement of the corresponding virtual work is given by

(203)

SW= — ff 6§)ﬂdzldz2 + {6;0]13} ’
A .

where 4 is the nondimensional domain given by % <z, = % and E—Z <z,=<22  and
1 1 2

1) @) @)

1 (1) (1)
= | 7 L gy |1 O | |02, 02,
Z

0% = gz, T, 0z, |00 o, 9z, T oz, 9z, | 0z,

(1) ©) (1) 0) QY] 0)

1) o)) 0) A\ % A\ 1) A\ % A\

_TE V1 (%IIZ +%2zz) ’ a %” %T (112 gz %” %_-'_ 0(12 gZ
1 b 2 b 2

(72 (1) o (1) % (0) o (0)
2 9 2 OW aW +_12ﬂ 7 ﬂ SW

+ | 2=+
d0z,| a, 0dz, 2 6z2 a, 0z, ? 0z,

HB ) D JOW
62”1 =7, 6U2 +7,, 6U2 - 7%22 o
9z, (204b)

1) 1) 0
w0, nz% oW, 2f aw+ 25/.2 a\()\)l+nz<7; a\%éw

+12,+ + =%, —+mx
2 azl ab 12 aZl 22 aZZ 12 a 22 a

MW M W IOW
6702 = 7¢11 6U2 + %12 8U2 - %11 0z (204C)

W 37(;){12 25 aW 2(7(2 a\%+ 7 6\(;\)/_'_ 2% oW oW

+21+a + T %lla 126 T lla 128
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In equations (204) 68U, 0U,, and OW are arbitrary nondimensional virtual displacement fields
along the z,,z,, and T directions, respectively. Integrating by parts, by using equations (25) spe-
cialized for the nondimensional coordinates (z,, z,), gives

by L (205a)
o o, LB Mg 0 \r
f d7dz,dz, = 57% +8%' |dzdz,+9, +9, -\ 7%, 6W/
ap
A 2
where
(1)
5%, =
o [ 90U W IOW o [ 9dU W IOW
| St + V1220w + W e [ D 4 VI2Z,0W + W 4 (205b)
0z, Jdz, 0z, 0z, 0z, 0z,
) 0) (0) 2 2 2
27, | 00U, 90U, gwadW  gwadW | o 9goW o 9dW o 9 dW
n(x_b 0z, + 0z, 0z, 0z, = 0z, 0z, | " 0z S 97,0z, T 9z,
0 (1) © (1) (1) (1)
|9 | oW 9OW 74 oW IOW g ddW |  © [ 4y 0OW
U, =7 |7 (621 0z, 9z, 9z, * dz, 0z, iz, 0z, (205¢)
by
(OF h 2% 1) 85W
9, = n%néU +7 12f‘)U —
0z,
= (205d)
by
9 3'5})5 “” 8\(71\)7 (731) a\(;\)f s 6W % 6\(;)\)’ \Ll
12 2 v Y
+ |2 + oz, + x| 7%, oz, + . oz, + 7, oz, Otb oz, 6Wf dz,
ar

-
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m
(OF! o) o OW
nZ— SU, + w7, 8U, -

b

o (205¢)
b72
12 i Z OW Z OW oW
+(2,+ iz + @, 0z, + 7, aZ2+ @, 0z, + 7%, iz, OW| dz,
az
Ly

by

b2\ Ly
L (1)
The symbol f / 7“;){12 6W\ ’ denotes the evalution of 7, dW at discontinuities of the

(RN

1
boundary curve 9 and are commonly called corner conditions. Next, noting that the boundary

conditions given by equations (201) and (202) are homogeneous and enforcing the conditions that
the virtual displacements satisfy the kinematic boundary conditions and the kinematic relations
given by equations (192)-(194) results in the following form for equation (205a):

. )
ff [67()01m + 62”’inl ]dzldzz = 0 (206&)
A

with
() Jo o o %12 M SIO) oo oo oo
W =n|7%, 0E, + R 0G,+7%,0E,, |+ 7, 0K, + 7, 0K, + 7, 0%,,  (206b)
@, Jo (o o »(7(2 ORI © (m
W =n|7%, (Q,GQ]) + a—” (92691 + 91692) + 7, (92692) (206¢)
b
where
0
M M
60, = - 2OV _ 6(91) (207a)
Zl
M 86({;\/ M
692 = - a— = 6(&22) (207b)
Z,
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@ ©0) 1)

oE, = U1 | yizz 5w + IW 9OW =6(E) (208a)
0z, 821 0z,

) (0) @)

(1) 1)
OE,, = a;sU + VI2Z3W + ‘32‘2’ a(;szvzv - 6(E22) (208b)
O 98U, adU, oW aoW . oW 9oW _ (%
— 1 2 —_
0Gu= 3 =+ * a2, 02, * oz, oz, - 6(G‘2) (208¢)
, M 1
6%, =— IOW _ 6(z) (2092)
A
, () 1
S%ns—aé?ﬁ=#%n) (209b)
9z,
, M
1) 9 OW ((n )
0%, =-2 =9(%, 209
2 02,0z, : (209¢)

where 0 denotes the variational operator of the Calculus of Variations. A convenient matrix form
of this variational statement is given by

<l ] ol e

where

(211a)

B0 \T ) 0) 0)
\%/ =\7%11 ", %nJ (211b)

83



©)

©) /A
% —= (.

= a, = [%(p)]

7% ©

%22

/(1)\T oW

\E/ = E11 E22 G12

/ \T M m O
\6E/ = \BEH 6E22 6G12J
)T o oW

{K> = \zn Xy %nJ

(1)

/ \T () () ()
\6%} :\6z” 6%22 6zlzJ

Nondimensional Stress-Function Formulation for Bifurcation

84

211c¢)

(212a)

(212b)

(212¢)

(213a)

(213b)

(213c¢)

(213d)

Like for the nonlinear boundary-value problem described previously herein, the stress-
function formulation of the Donnell-Mushtari-Vlasov bifurcation equations is also used to
facilitiate solution of practical problems by reducing the number of unknown functions to two.

. . (1) .
These two unknowns for this case are the normal displacement W(z,, z,) and a corresponding

stress function 8(21, z,), and the procedure for obtaining the corresponding equations is the same
as that previously described herein for the nonlinear boundary-value problem. Subsequently, the
reduction of the boundary-eigenvalue problem to two coupled partial differential equations is
presented, along with the corresponding boundary conditions. Then, the corresponding
expressions for the virtual work and complementary virtual work, are presented that are useful for



for solving boundary-value problems by direct variational methods.

Following the definitions given by equations (115), let 7 = (2., 2,) denote the stress

function defined by
2(1)
o7, =27 (214a)
dz,
o a2(1)
T, = pae (214b)
1
n2<> 5)8
Ty - 97 214c
o, 7. = 92,0z, ( )

such that equations (198a) and (198b) are satisfied identically and

©0) a)

7=7+e7+0(¢) (2144d)

Using equations (181), (198a) - (198d), and (214), the transverse equilibrium equation given by
equation (198e) becomes

My L Oy AW 07, 17 oW . 9w
R 222 12 +—Z —prlg, T 44, T
9z, 02,02, 9z, 9z, oz, P19 52, 7 % 4z, 015)
29 W)+ ow 2 LR 0'W S IW _,
+ + T + + =
2 5) LY 2 () ) 2
where
0OV 9T aW 97 aW ., 07 oW
1(7, w) 8Z2 aZ, S aZ? aZZ azlazz aZlaZZ (216)

Next, substituting equations (214) into equations (197), and then substituting the result into
equation (215) yields the nondimensional stress-function form of transverse equilibrium equation
given by

* 0z,

D W)+ vTZD[3)- D3] 2[5, Wip) 5], S0 5. 3
217)
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where
4D 4D 4
oW OW 2, W (218a)
Z

) Y
I W I W
Wl=d, —5 +4« + 2|, + 24 +
"( ) "oz, * 92,0z, (40 24) 0z, " 92,02, 0z,
(1 f% f%
29@(7) =Z -5 +Z,—5 (218b)
0z, 0z,
o) 37 0’7 0’7
Dg(7) =%, 7+ (2?26 - 261)3— + (?“ +8y - 2366)?
0z, 02,0z, 02,0z, (218c¢)
8'7 8'7
+(28 -8y )| ——=+8, —
( : 62)821822 B az;t

The nondimensional compatibility equation needed is obtained by substituting equations
(175c¢) and (190) into equation (105), and then retaining only terms that are first order in the small

parameter €. The resulting equation is given by

O 5 L)

(1) ©0) (1)
0 E, + 9 E222 090G, = V12D (W) + _{’(W(f)'), W) (219)
0z, 02,0z, ¢

2
0z,

Next, substituting equations (214) into equations (196), and then substituting the result into
equation (219) yields the nondimensional stress-function form of the compatibility equation as

1) (1) (1) 0) o (1)
Dm(%f) +7Dg(w) - V12 Dc(w) = 4/(w(p), w) (220)
where
0 0'g o'z o'z 5. o7 1 0'z
m(?)fai T T e (221a)
Z, 0z,0z, 0z,0z, Oy 02,02, O, 0Z,

L, O L, M L, O  , M) 5 © , (D)
& _OWIW _ IWIW 5, IW IW (221b)
z. 9z, 0z,0z, 9z,0z,

0)
W(p), W |=
‘4( (p), ) Bzi azf

The boundary conditions associated with the adjacent equilibrium states are obtained by
using equations (197), (198c), (198d), and (214) with equations (201) and (202). The boundary
conditions on the edges z, = a,/L, and z =b,/L,, given by equations (201), become

(2222)

aw) o
Z_0 or U=0
0z
2
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(222b)
'z 0’7 0’7 17 a'W W
4 +(28, -8, )=+ (8, -28, | —25+28,, —% —d, LW 4«
. Z? ( * 61)6zf622 ( : °°)azlaz§ : azi " azl “o oz, ,0Z,
0'W AW . A0 aW O aW 8’7 a\(?\)f 0’7 oW
T
B ("llz + 4466)6Z16Z§ =2y 5 oz, + WL 0z, + o, (2 0z, * 9z, 97, "~ 92,0z, 0z, =0
(1)
or W=0 (222¢)
0’7 0’7 0’7 "W 9"W "W W
97 o7 _ _ _ _ = oW _

Z, oz + &, P 2, 2.0, 4, P ., P 2d 1 9297, 0 or l_0 (222d)
Similarly, on the edges z,= a,/L, and z,=b,/L,, the boundary conditions given by equation
(202) become

az(l) o
97 _9 or U,=0 (223a)
0z,
2(1 I
97 _o or U=0 (223b)
0z,0z,
aag 63%} 63%} asg 5.(D 5.(D
J W d ‘W
28, —5 + (B, 284 |——+ (28— By | ——+7F - 24 —-d
26 62? ( 22 66) ? Zz ( 16 62)6Zlazi 12 aZ; 16 aZ': 22 aZZ
o'W FW Y W 9 aw 0’7 oW )7 oW
- (ol.z +4al66) oz, — 4dy 9207 + a—b% R + 7 7, iz, azf 9z, ~ 92,92, oz, =0
(1)
or W=0 (223¢)
H(1) 2(1) 2() 2 (D 5 (1) 2 (D 1)
97 97 97 O W W oW _ oW
g12 azz +gzz Z? ] azlazz _d12 GZ? _’{22 aZZ 2’{26 allaZZ =0 or

=0 (223d)
J9z,
In these equations, the tangential displacements must be expressed in terms of the normal

(1)

are obtained from the nondimensional strain-displacement relation, equations (193); that is

1)
displacement and the stress function. Expressions for the tangential displacements U, and
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) (0) (1)

(I) (1)
Iy, _ JI2Z,W - ﬂ A (224a)
aZl Zl aZ1

1) (0) (1)

(1> (1)
WUs _§ _ Tz - OV oW (224b)
(")Zz 0z, 0z,
) o " © o W
aU, N ou, =G, - oW oW W oW (224¢)
0z, Jdz, dz, 0z, 0z, 0z,

Substituting equations (214) into equation (196) and the result into these three expressions gives

1) H(1) 2(1) 2(1)

U, 1 d 7 a7 9, 97
0z, o 9z "oz o, 02,07, (225a)
2 (D) 2 (D) 2 (D . 0) (1)
+’6’,,6W+’6’|28W+2€]6 oW - VI2ZW _0W W
82, 822 92,0z, "~ 0z, 0z,
1) 2(1) 2D 2(1)
U, 07 207 97
o =~ Vn 2+am 2+amYm
0z, 0z, dz; 02,02, (225b)
2 (D) 2 (D) 2 (D) m 0) (1)
GZ, (')Z2 6 a Zz 6Z2
(IIJ) 8 5 azm az(n 5
a I+L=_7m 72_amYm_72_2(M+vm) +
0z, 0z, o, 9z, 0z, 02,0z, (225¢)
I W \(71\)7 d \(7]\)7 d \(7'\)7 6\(%)7 6\(71&)7 6\(;)\} a\(?l\)/
Ea 9z 8o 9z + 280 02,0z, 0z, 0z, 0z, 0z,

1)
The nondimensional displacements are represented in terms of 7 and W , to within a rigid-body
motion, by the integrals of these three equations.

(1)
Virtual Work in terms of W and g

Equations (217) and (220) are the nondimensional forms of the equations governing
pointwise equilibrium normal to the tangent plane and compatibility, respectively. For some
problems, it is more useful to use a stress-function formulation of the variational principle given
by equation (210) instead of equation (217). First, by using equations (214), equation (211a) is
written as
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T
() »(1) ()

P\ fgm\ |37 o7 o7
A RS Bl e e it P 72 (2262)
such that
0’67 97 907 '
/ [¢9)] _ 1) _ B
6\67}_<66 }_ oz, 0z, 02,02, (226b)

Similarly, by using equations (194), (207)-(209), and (214), equations (196) and (197) yield
[sE\ = / 952\ [s2)
(oF) = [a]{ 907} - [&]{o% ] (227)

and

{m)=[B] {07} + [](%) (228)

where [d] , [‘{5’] , and [dl] are defined by equations (154a), (139b), and (139c), respectively.
Noting that equation (206b) can be expressed as

it follows that

(1) T

o, = %) ] a5 - (3 [8)[%) 0

The variational principle specified by equation (206a) is given in terms of the stress function ;

(1)
and normal displacement W by using equation (230) and

@)

() e

The boundary-eigenvalue problem is then posed with the resulting variational principle, the
compatibility equation given by equation (220), and the appropriate boundary conditions. The
variational principle enforces equilibrium in the direction normal to the shell reference surface.
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(1) 1
Complementary Virtual Work in terms of W and ;

In lieu of using compatibilty equation (220), a variational principle is obtained from the
complementary virtual work given by

(1) 1) B
f f S* dz,dz, + d2W* =0 (232a)
A
with
" w9 O GW oW
2
6%*im_E ———&/—Z —a—Zla—ZlJTB%*”
M (1) ) & AW (232b)
+|E, - 2 yiozw - IV OW s
0z, 0z,
(1) (1) 0) 1) 0) (1)
@ _9U, U, oW W _ gW oW |x’ S7*,,
0z, 9z, 0z, 9z, 0z, 0z, |a,
by 22
L] by La b
o) n oy o) L2 ) o § “l
SH* =n’ {Ul 7 +U267¢*22} dz, + ¢ {U,67{*11+U } (232¢)
a, a2 71

-

2
le 'd2
L1 L2

2
and where 7 077*,,, ' 877*,,, and g— d7*,, are statically admissible virtual stress resultants
b

associated with the corresponding incompatible tangential strains defined by equations (193).
Equation (232c) represents the virtual work that occurs when the tangential displacements fail to
satisfy the geometric boundary conditions specified by equations (201a,b) and (202a,b). If the
geometric constraints are forced to be satisfied and the strains are forced to be compatible,
pointwise, then the resulting work must be zero, as stated by equation (232a). Integrating
equation (232b) by parts, by using equations (25) specialized for the nondimensional coordinates
(z,, z,), gives
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W W a 0) (1)
ff SW*, dz,dz, = B, - vI2Z,W - IV Wiroge,
/4 1 1

A

0) (1) (0) (1) () (1)

(I) 1) 1)
VW WV AW | e |G OW aW _ aW oW |z

67{*12 dz,dz,

0z, 0z, dz, dz, 0z, 07, |q,
(233)
0077* 20077%,, |0 2 0071* ad77* , |
+ T Ly 2lu, + [ B E i 2|0, | dz,dz,
0z, o, 97, o, 9z, 0z,
JJIA
22 ., by y
) (O Y/4 L1 (O Y/4l (l) L2
- /Ul o7+, + U, ‘2\ - /Ul = 6%*22\
\ /TI \ a, frz
J 22 a)
Lo L

The virtual stress resultants are required to be statically admissible; that is they satisfy equilibrium
equations (198a,b) and the force boundary conditions in equations (201a,b) and (202a,b). This

@ O]

requirement yields 077*,, — 57’111 87*,, = 07, , and 077*,, — d7,, . In addition, the boundary
integrals in equations (232c¢) and (233) cancel. Thus, equation (232a) reduces to

1) (1) (1) & 200
SH*, dz,dz, = - VIZZ,W - ﬂ oW |9 &7
4 0z, 0z, 0z,
A (234)
o o oW aw|or o aw oW _ W oW | 907
+ ‘/—ZW‘a_zz 3z, azl = |Se =52 9z, "oz, oz, |9z,0z, | 94197 =0
where the eqauations
" 626(1)
w7, = —= (235a)
0z,
W a26(1)
757, = L7 (235b)
0z,
2 2.
T osy - 907 235¢
o, 0%, = " 92,0z, ( )

have been used. Equation (234) is an integral statement of compatibility of the tangential strains
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associated with adjacent equilibrium states. Further integration by parts of equation (234) yields

(1)

670* dz,dz, =

H

where the integrand is the compatibility equation given by equation (219).

L) () L)

J E11 d E22 J (}12 J— ((l)) ((0) . (1))
- 2D (W] - £|W(F), W
oz, 02,0z, D. £\ W(p)

(€3}

87 dz,dz,  (236)

+ boundary terms

A convenient matrix representation of equation (234) is given by

JJ ({(ﬁ}T— Jﬁ\()l\)flzl Z, OJ - {EQ}T[ Q ]){8 Y; }dz dz,=0 (237)
A

where {(Q

0) ©0)

LW, W

o 0z, dz,
[ Q ] = ©) ©) (238)
0o _9W _ oW

0z, 0z,

Using constitutive equation (196), the integrand of equation (237) is expressed as

- bz 2 o0 (88 o3
f (1)\T /m\T T (1) /(U\T 7[00 (239)
- (3#) [a] - (2] [B] - 12W1z, 2 o] - (8 8] |{a55)
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Values of the Nondimensional Parameters

An extensive collection of tables and figures is presented in this section that shows the effects
of lamina material properties and stacking sequence on the fundamental nondimensional
parameters, and in some cases, their associated coefficients. In particular, results are presented for
the nine lamina material systems given in Table 1 and for several stacking sequences. The fiber
orientation angle 0 of an arbitrary lamina is depicted in figure 3. This angle is defined as the angle
between the line tangent to the & -coordinate curve and the line tangent to the fiber at a given point
(§,, €,, ©) of a shell. The stacking sequences considered include balanced symmetric angle-ply
laminates, balanced antisymmetric angle-ply laminates, symmetric quasi-isotropic laminates,
antisymmetric quasi-isotropic laminates, and unsymmetric quasi-isotropic laminates. Results are
also given for unbalanced, unsymmetric laminates composed of perpendicular plies aligned with
the two surface coordinates and a single family of angle plies. For every laminate considered, the
total thickness h is calculated based on the number of plies and a ply thickness of 0.005 in.

Results for Angle-Ply Laminates

Results showing the effects of the fiber orientation angle 0 on the values of the
nondimensional parameters, or their associated coefficients, for [(+6/-0), ], and [(-06/+0),_ ]
symmetric laminates and for (+0/-0)_and (-6/+0)_ antisymmetric laminates are presented in
Tables 2-14 and figures 4-20. The results shown in the figures were computed for one-degree
increments of 0. In each of figures 4-14, nine curves are shown that correspond to the nine
material system given in Table 1, and the results indicate that the P-100/3502 laminates generally
possess the most extreme values of the nondimensional parameters, or their associated
coefficients. In contrast, the effect of fiber angle is generally the most benign for the boron-
aluminum laminates. As a consequence of the extreme values exhibited, results for laminates
made of the P-100/3502 material are presented in Tables 11-14, and curves are shown in figures
15-20 that correspond to different values of the stacking sequence number m.

Results showing the effect of the fiber orientation angle 0 on the values of the flexural
orthotropy parameter 3 are shown in figure 4 and Table 2 for the symmetric and antisymmetric
angle-ply laminates. Each of these laminates has the same value of 3 for a given material system,
regardless of the number of plies (m =1, 2, ...). For all laminates, the larger values of 3 occur in
the range 30 degrees < 0 < 60 degrees, with the maximum at 0 =45 degrees. For all the results,
0.250 < B =< 2.76.

Values of the orthotropy coefficients (a,/a,)" and (D, /D,)" that appear in the
nondimensional parameters o and o, respectively, are given in Table 3 and shown in figure 5
as a function of the fiber angle 6. For these particular laminates, both coefficients have the same
value for a given material system and a given value of 0. In addition, these values are independent
of the number of laminate plies. The results presented in figure 5 show monotonic reductions in
the values of the coefficients with increasing values of 6. Moreover, the larger values of the
coefficients for each laminate occurs for 0 <45 degrees and the smaller values for 0 >45 degrees.
All values of these coefficients are between 0.342 and 2.93.
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The effects of material system and fiber orientation on the values for the generalized
Poisson’s ratios v and v, are given in Table 4 and shown in figure 6. For these symmetric and
antisymmetric angle-ply laminates, the Poisson’s ratios possess identical values for a given
material system and fiber angle, and these values are independent of the number of plies. Figure
6 indicates that all Poisson’s ratios are positive valued and the largest value is less than 0.9. For
all laminates, the larger values occur in the range 30 degrees < 0 < 60 degrees, with the maximum
at 0 =45 degrees.

Results showing the effect of the fiber orientation angle 6 on the values of the membrane
orthotropy parameter w are shown in figure 7 and Table 5 for the symmetric and antisymmetric
angle-ply laminates. Each of these laminates also has the same value of u for a given material
system, regardless of the number of plies. For all laminates, the larger values of w occur in the
ranges 0 < 10 degrees and 0 > 80 degrees, and the smallest occur in the range 30 degrees < 0 <
60 degrees, with the minimum at 0 =45 degrees. Altogether, -1 <u <5.5.
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parameters Z, and Z, are given in Table 6 and shown in figure 8 as a function of the fiber angle
0. Each of these laminates also has the same value of this coefficient for a given material system
and fiber angle, regardless of the number of plies. All values of the coefficient are between 0.4
and 1.0, with the smaller values in the range 30 degrees < 0 < 60 degrees.

Values of the coefficient that appears in the nondimensional Batdorf-Stein

The effects of material system and fiber orientation on the values of the flexural anisotropy
parameters y, and 0, for (+0/-0), and (-0/40), four-ply symmetric laminates are given in Tables
7 and 8, respectively, and shown in figure 9-10, respectively. The values of these two parameters
are between -0.015 and 0.7 for the (+0/-0), laminates, and between -0.7 and 0.015 for the (-0/+0),
laminates. Although it is not shown herein for all material systems considered, the magnitudes of
these parameters diminish in the [(+0/-0)_], and [(-6/+0)_], symmetric laminates as the number
of plies increases. For the (+0/-0)_ and (-0/+0)_ antisymmetric laminates, y, and 0, are
identically equal to zero for all values of 8 and m. A parametric plot of y, and 9, is presented
in figure 11 for the (+0/-0), and (-6/+0), symmetric laminates, where 0 is the parameter. Each
curve in this figure is traversed counterclockwise as 0 increases from 0 to 90 degrees, and each
curve is symmetric about a line passing through the points of the curves that correspond to 0 =
45 degrees. Moreover, each curve begins and ends at the origin where 6 = 0 and 90 degrees,
consistent with a lack of flexural anisotropy. The unfilled circular symbols correspond to
sequential values of 0 in 15-degree increments. The difference in shape of the parametric curves
indicates that the lamina material properties have a moderate effect on the relative proportions of
the two anisotropy parameters, with respect to the fiber angle.

Values of the only nonzero load-path eccentricity parameters, e,, and e, are given for the
(+6/-0) and (-6/+0) two-ply antisymmetric laminates in Tables 9 and 10, respectively, and are
shown in figures 12 and 13, respectively, as a function of the fiber angle 0. The corresponding
parametric plot, with 0 as the parameter, is shown in figure 14. Each parametric curve in this
figure is also traversed counterclockwise as 0 increase from O to 90 degrees, and each curve is
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also symmetric about a line passing through the points of the curves that correspond to 6 =45
degrees. The unfilled circular symbols in this figure also correspond to sequential values of 0 in
15-degree increments. The values of these two parameters are between -0.015 and 1.78 for the (-
0/4+0) laminates, and between -1.78 and 0.015 for the [+6/-0] laminates. The difference in shape
of the parametric curves shown in figure 14 indicates that the lamina material properties has a
moderate effect on the relative proportions of the two load-path eccentricity parameters, with
respect to the fiber angle. For the symmetric angle-ply laminates, all load-path eccentricity
parameters are identically equal to zero.

The combined effects of fiber orientation and number of plies on the values of the flexural
anisotropy parameters y, and 9, are given in Tables 11 and 12, respectively, and shown in figures
15-16, respectively, for [(+0/-0)_ ], and [(-6/+0), ], symmetric laminates made of the P-100/3502
material. The corresponding parametric plot, with 6 as the parameter, is shown in figure 17. Each
parametric curve in this figure is also traversed counterclockwise as 0 increases from O to 90
degrees, and each curve is also symmetric about a line passing through the points of the curves
that correspond to 0 =45 degrees. In going from four to twenty-four plies, the maximum
magnitude of these anisotropy parameters is reduced by 83%. Likewise, in going from four to
forty-eight plies, the maximum magnitude of these anisotropy parameters is reduced by 92%. The
similar shape of the parametric curves indicates that the number of plies has a relatively small
effect on the relative proportions of the two anisotropy parameters, with respect to the fiber angle.

The combined effects of fiber orientation and number of plies on the values of the load-path
eccentricity parameters ¢,, and ¢, are given in Tables 13 and 14, respectively, and shown in
figure 18-19, respectively, for the (+6/-0)_ and (-0/+0)_ antisymmetric laminates made of the P-
100/3502 material. The corresponding parametric plot, with 0 as the parameter, is shown in figure
20. Each parametric curve in this figure is also traversed counterclockwise as 0 increase from 0
to 90 degrees, and each curve is also symmetric about a line passing through the points of the
curves that correspond to 6 =45 degrees. In going from two to twenty-four plies, the maximum
magnitude of these anisotropy parameters is reduced by 92%. Likewise, in going from two to
forty-eight plies, the maximum magnitude of these anisotropy parameters is reduced by 96%. The
similar shape of the parametric curves for these parameters also indicates that the number of plies
has no significant effect on their relative proportions, with respect to the fiber angle.

Results for Quasi-Isotropic Laminates

Results showing the effects of the number of plies, and their order, on the values of the
nondimensional parameters, and associated coefficients, for quasi-isotropic laminates made of the
nine lamina material systems are presented in Tables 15-45. Additionally, the results for the P-
100/3502 laminates are shown figures 21-30. In particular, results are presented in these Tables
and figures for [(+45/0/90), ], and [(0/90/+45) ], symmetric laminates, [(+45/0/90), ], and
[(0/90/£45)_], antisymmetric laminates (antisymmetry is indicated by the subscript A in the
stacking sequence notation herein), and (+45/0/90)_ and (0/90/+45)_unsymmetric laminates, for
sequential integer values of m from 1 to 8. Likewise, three or four curves that connect symbols
are shown in figures 21-30. In most of the figures, the dashed and solid blue curves correspond to
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results for the [(+45/0/90), ], and [(£45/0/90),], laminates and the [(0/90/+45)_], and [(0/90/
+45)_], laminates, respectively. The dashed and solid gray curves correspond to results for the
(x45/0/90)_ laminates and the (0/90/+45) _laminates, respectively. For each of these laminates,
(ay/a, )™ =1 and w=1, regardless of the lamina material system and number of plies. Similarly,
the values of the generalized membrane Poisson’s ratio v_ are independent of the number of plies.
The variation of v_ with material system is presented in Table 15 and ranges from 0.272 to 0.325.

The effects of lamina material properties and number of plies on the coefficient (D, /D,)"
that appears in the nondimensional parameter o, are presented in Tables 16-19. Specifically, the
values given in Table 16 are for the [(+45/0/90) ], and [(£45/0/90), ], laminates, the values in
Table 17 are for the [(0/90/+45), ], and [(0/90/+45), ], laminates, the values in Table 18 are for the
(x45/0/90)_ laminates, and the values in Table 19 are for the (0/90/+45)_laminates. The results
for each of these laminates made of the P-100/3502 material are shown in figure 21. The results
in Tables 16 and 17 for the symmetric and antisymmetric laminates, and in Table 19 for the (0/
90/+45), unsymmetric laminates, indicate that the values for (D, /D,,)" approach unity, the value
for a homogeneous isotropic material, from above as the number of plies increases, regardless of
the lamina material system, as shown in figure 21 for the corresponding P-100/3502 laminates.
However, the results in Table 18 and figure 21 for the (+45/0/90), unsymmetric laminates show
convergence from below to unity as the number of plies increases. Altogether, these results are
bounded by the values (D, /D,,)" =0.772 and 1.30.

Results that show the effects of lamina material properties and number of plies on the
nondimensional parameter {3 are presented in Table 20 for the [(£45/0/90)_] and [(£45/0/90)_],
laminates, in Table 21 for the [(0/90/+45), ], and [(0/90/+45), ], laminates, and in Table 22 for the
(x45/0/90)_and (0/90/+45)_laminates. The results for each of these laminates made of the P-100/
3502 material are shown in figure 22. The results in Table 20 for the [(x45/0/90)_]; and [(x45/0/
90)_], laminates, and in Table 22 for both families of unsymmetric laminates, indicate that the
values for B approach unity, the value for a homogeneous isotropic material, from above as the
number of plies increases, regardless of the lamina material system. This trend is shown in figure
22 for the corresponding P-100/3502 laminates. However, the results in Table 21 and figure 22
for the [(0/90/+45), ], and [(0/90/+45) ], laminates show convergence from below to unity as the
number of plies increases. Altogether, 0.266 < f3 < 2.22, and the unsymmetric laminates exhibit
significantly faster convergence to unity than the other laminates with increasing number of plies.
This convergence characteristic is explained by noting the basic unit forming each stacking
sequence is repeated more for the unsymmetric laminates, for a given number of plies, thus
approaching the homogeneity of an isotropic material faster.

Results that show the effects of lamina material properties and number of plies on the
generalized Poisson’s ratio v, are presented in Table 23 for the [(+45/0/90), ], and [(x45/0/90)_],
laminates, in Table 24 for the [(0/90/+45), ], and [(0/90/+45), ], laminates, and in Table 25 for the
(x45/0/90)_and (0/90/+45)_laminates. The results for each of these laminates made of the P-100/
3502 material are shown in figure 23. The results in Table 23 for the [(+45/0/90)_]; and [(+45/0/
90),1, laminates, and in Table 25 for both families of unsymmetric laminates, indicate that the
values for v, approach the corresponding value of v_ given in Table 15, from above as the
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number of plies increases, regardless of the lamina material system. This trend is shown in figure
23 for the corresponding P-100/3502 laminates. In contrast, the results in Table 24 and figure 23
for the [(0/90/%45), ], and [(0/90/+45), ], laminates show convergence from below to the
corresponding value of v_ as the number of plies increases. Altogether, 0.091 <v, <0.716, and
the unsymmetric laminates exhibit significantly faster convergence than the other laminates with
increasing number of plies.

The effects of lamina material properties and number of plies on the flexural anisotropy
parameters y, and 9, are presented in Tables 26 and 30 for the [(+45/0/90)_] laminates,
respectively; in Tables 27 and 31 for the [(0/90/+45),_ ], laminates, respectively; in Tables 28 and
32 for the (+45/0/90)_ laminates, respectively; and in Tables 29 and 33 for the (0/90/+45)_
laminates, respectively. Values of y, and 9§, for each of these laminates made of the P-100/3502
material are shown in figures 24 and 25, respectively. In contrast to the previous figures, results
for the [(£45/0/90), ], and [(0/90/+45), ], symmetric laminates are indicated in these two figures
by dashed and solid black lines, respectively. The values of y, and 9§, for the [(+45/0/90), ], and
[(0/90/+£45)_], antisymmetric laminates are equal to zero and are indicated in the two figures by
the solid blue line. Unlike the previous corresponding results, the results in Tables 26-33, and
figures 24 and 25, indicate convergence to a value of zero, the value for a homogeneous isotropic
material, from above for the [(x45/0/90) ], [(0/90/+45), ], and (x45/0/90), laminates and from
below for the (0/90/+45)_laminates. Altogether, -0.209 <y, <0.351,-0.351 <9, <0.253, and the
unsymmetric laminates exhibit significantly faster convergence than the other laminates with
increasing number of plies.
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parameters Z, and Z, are given in Table 34 for the [(+45/0/90)_]; and [(£45/0/90)_], laminates,
in Table 35 for the [(0/90/+45) ], and [(0/90/+45)_], laminates, and in Table 36 for the (+45/0/
90)_and (0/90/+45)_laminates. The results for each of these laminates made of the P-100/3502
material are shown in figure 26. The results in Tables 34 and 36 indicate that the values for the

Values of the coefficient /I that appears in the nondimensional Batdorf-Stein

coefficient for each lamina material system approach the corresponding value of 4/1-v,, , where

v_ is given in Table 15, from above as the number of plies increases. This trend is shown in figure
26 for the corresponding P-100/3502 laminates. In contrast, the results in Table 35 and figure 26
for the [(0/90/+45), ], and [(0/90/£45), ], laminates show convergence from below to the

corresponding value of 4/1-v, as the number of plies increases. For all cases considered, the

values for /12 are between 0.875 and 1.09, and the unsymmetric laminates exhibit
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significantly faster convergence than the other laminates with increasing number of plies.

Values of the load-path eccentricity parameter e, are given for the (+45/0/90)_ and (0/90/
+45)_laminates in Tables 37 and 38, respectively, and are shown in figure 27 as a function of the
number of plies for the laminates made of the P-100/3502 material. The values of this parameter
for the symmetric and antisymmetric quasi-isotropic laminates are equal to zero, and are indicated
in figure 27 by the solid blue line. These results indicate that the values of ¢,, are negative and
approach zero from below with increasing number of plies for all the laminates except the (+45/
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0/90), laminates made from the Boron-Aluminum and the Boron-epoxy materials. These two
exceptions approach zero from above with increasing number of plies. Moreover, the values of
e, for the (0/90/+45)_laminates are significantly larger than the values for the corresponding
(x45/0/90)_ laminates, and exhibit a slower convergence rate. This difference in convergence
rates is illustrated in figure 27 for the laminates made of the P-100/3502 material.

Values of the load-path eccentricity parameters e, and e are given for the (+45/0/90)  and
(0/90/+45)_ laminates in Tables 39 and 40, respectively, and are shown in figure 28 as a function
of the number of plies for the laminates made of the P-100/3502 material. The values of these two
parameters for the symmetric and antisymmetric quasi-isotropic laminates are equal to zero, and
are indicated in figure 28 by the solid blue line. These results indicate that the values of e, and
e, are negative and approach zero from below with increasing number of plies for all the
(x45/0/90)_ laminates. However, the values of ¢, and e, for the (0/90/+45)_laminates are
positive and approach zero from above with increasing number of plies. Moreover, the values of
the parameters for a given (+45/0/90)_laminate are the negative of the corresponding (0/90/+45)
laminate. Thus, both laminate constructions exhibit the same convergence rate as illustrated in
figure 28 for the laminates made of the P-100/3502 material.

The effects of lamina material properties and number of plies on the load-path eccentricity
parameters e, and e, are given for the [(£45/0/90) ], and [(0/90/+45), ], antisymmetric
laminates in Tables 41 and 42, respectively, and for the (+45/0/90) and (0/90/+45)_
unsymmetric laminates in Table 43. The corresponding results are shown in figure 29 as a
function of the number of plies for the laminates made of the P-100/3502 material. These results
indicate that the values of ¢, and e, are equal and negative and approach zero from below with
increasing number of plies for all the laminates. In addition, all the laminate families exhibit
nearly the same convergence rate, as depicted in figure 29. The values of the parameters for the

corresponding symmetric laminates are identically equal to zero and are depicted in figure 29 by
the black solid line.

Values of the load-path eccentricity parameter e, are given for the (+45/0/90) and
(0/90/£45)_ laminates in Tables 44 and 45, respectively, and are shown in figure 30 as a function
of the number of plies for the laminates made of the P-100/3502 material. The values of this
parameter for the symmetric and antisymmetric quasi-isotropic laminates are equal to zero, and
are indicated in figure 30 by the solid blue line. These results indicate that the values of e,, are
positive and approach zero from above with increasing number of plies for all the laminates
except the (£45/0/90), laminates made from the Boron-Aluminum and the Boron-epoxy
materials. These two exceptions approach zero from above with increasing number of plies.
Moreover, the values of e,, for the (0/90/+45)_laminates are significantly smaller than the values
for the corresponding (+45/0/90),_ laminates, and exhibit a faster convergence rate, as is illustrated
in figure 30 for the laminates made of the P-100/3502 material.
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Results for Unbalanced, Unsymmetric Laminates

Results showing the effects of the fiber orientation angle 0 on the values of the
nondimensional parameters, and associated coefficients, for (+6/0/90)_and (-6/0/90)_laminates
are presented in Tables 46-72 and figures 31-62. In each of figures 31-49, nine curves are shown
for one-degree increments of 0 that correspond to the nine material systems given in Table 1, and
the results also indicate that the P-100/3502 laminates generally possess the most extreme values
of the nondimensional parameters, or their associated coefficients. As seen for the angle-ply and
quasi-isotropic laminates examined herein, the effect of fiber angle is generally the most benign
for the boron-aluminum laminates. As a consequence, results for laminates made of the P-100/
3502 material are presented in Tables 62-72, and curves are shown in figures 50-62 that
correspond to different values of the stacking sequence number m.

Values of the nondimensional flexural orthotropy parameter {3 for the (+6/0/90)_and
(-6/0/90)_ laminates vary with the number of plies forming a given laminate. The effects of the
fiber orientation angle © on the values of § are shown in figure 31 and given in Table 46 for the
(+06/0/90) and (-6/0/90) three-ply laminates. For all three-ply laminates, the larger values of f3
generally occur in the range 40 degrees < 6 < 65 degrees, with the maximums between 6 = 50
and 55 degrees. Overall, 0.064 <3 < 1.23 for the three-ply laminates.

Values of the orthotropy coefficients (D ,/D,)" and (a,/a,)"” that appear in the
nondimensional parameters o, and o, respectively, are given in Tables 47 and 48, respectively,
and shown in figures 32 and 33, respectively, as a function of the fiber angle 6. For these families
of unbalanced and unsymmetric laminates, the two coefficients generally have different values for
a given material system and a given value of 0, unlike the symmetric angle-ply laminates
examined herein. In addition, the values of (a,/a, )" are independent of the number of laminate
plies, whereas the values of (D,,/D,,)"" depend on the number of plies. Thus, the results presented
in figure 32 are for (+6/0/90) and (-6/0/90) three-ply laminates. The general trend shown in
figures 32 and 33 is a monotonic reduction in the values of the coefficients with increasing values
of 8. Moreover, the coefficient (D, /D,,)" exhibits the the most pronounced reductions with
increasing values of 0. Altogether, 0.478 < (D,,/D,,)"* =< 1.02 for the three-ply laminates and
0.845 =< (a,/a, )" =< 1.18 for these laminates with any number of plies.

The effects of material system and fiber orientation on the values of the generalized Poisson’s
ratios v, and v, are given in Tables 49 and 50, respectively, and shown in figures 34 and 35,
respectively. For these families of unbalanced and unsymmetric laminates, the two coefficients
also generally have different values for a given material system and a given value of 0. In addition,
the values for v_ are independent of the number of laminate plies, whereas the values of v,
depend on the number of plies. Thus, the results presented in figure 35 are for (+6/0/90) and (-0/
0/90) three-ply laminates. The results given for these parameters indicate that all Poisson’s ratios
are positive valued and the largest value is less than 0.4. For all laminates, the larger values of
both Poisson’s ratios occur in the range 40 < 0 < 65 degrees. Moreover, the results indicate 0.008
<v, =0.385 for the three-ply laminates and 0.009 = v_ =< 0.242 for these laminates with any
number of plies.
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Results showing the effect of the fiber orientation angle 6 on the values of the membrane
orthotropy parameter w are shown in figure 36 and given in Table 51 for the two families of
unbalanced, unsymmetric laminates. Each of these laminates also has the same value of n for a
given material system, regardless of the number of plies. For all laminates, the larger values of w
occur in the ranges 0 < 10 degrees and 0 > 80 degrees, and the smallest occur in the range 30
degrees < 0 < 60 degrees, with the minimum at 0 = 45 degrees. Altogether, 1.23 <u < 16.9.

The effects of material system and fiber orientation on the values for the membrane
anisotropy parameters y,_ and O, for the (+6/0/90) and (-6/0/90)_ laminates (m=1,2, ...) are
given in Tables 52 and 53, respectively, and shown in figure 37 and 38, respectively. The values
of these two parameters are between -0.048 and 2.06 for the (+6/0/90)  laminates, and between
-2.06 and 0.048 for the (-6/0/90),, laminates. The largest magnitudes of y_ and 9§, occur for 6 >
65 and 0 < 25 degrees, respectively. A parametric plotof y_and 0_ is presented in figure 39 for
the (+0/0/90), laminates, where 0 is the parameter. Each curve in this figure is traversed
clockwise as 0 increases from O to 90 degrees, and each curve is symmetric about a line passing
through the points of the curves that correspond to 6 =45 degrees. The unfilled circular symbols
correspond to sequential values of 0 in 15-degree increments. The difference in shape of the
parametric curves indicates that the lamina material properties have a moderate effect on the
relative proportions of the two anisotropy parameters, with respect to the fiber angle.

The values of the flexural anisotropy parameters vy, and 0, for (+0/0/90)_ and (-6/0/90)
laminates generally vary with the number of plies, for a given material system and fiber angle 6.
To gain insight into the nature of these parameters, the effects of material system and fiber
orientation on the values of the flexural anisotropy parameters y, and 0, for the (+6/0/90) and
(-6/0/90) three-ply laminates are given in Tables 54 and 55, respectively, and shown in figures 40
and 41, respectively. The values of y, are between -0.008 and 0.499 for the (+6/0/90) laminates,
and between -0.499 and 0.008 for the (-6/0/90) laminates. The corresponding magnitudes of J,
are generally smaller than the corresponding magnitudes of y,. In particular, the values of 0, are
between -0.007 and 0.349 for the (+6/0/90) laminates, and between -0.349 and 0.007 for the
(-6/0/90) laminates. In addition, the larger magnitudes of y, and §, occur in the ranges 40 < 6 <
50 degrees and 55 < 0 < 65 degrees, respectively. A parametric plot of y, and 9§, is presented in
figure 42 for the (+06/0/90) three-ply laminates, where 0 is the parameter. Each curve in this figure
is traversed counterclockwise as 0 increases from O to 90 degrees, and each curve is not
symmetric about a line passing through the points of the curves that correspond to 0 =45 degrees.
The unfilled circular symbols correspond to sequential values of 6 in 15-degree increments. The
difference in shape of the parametric curves indicates that the lamina material properties have
only a moderate effect on the relative proportions of the two anisotropy parameters, with respect
to the fiber angle.
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parameters Z and Z, are given in Table 56 and shown in figure 43 as a function of the fiber angle
0 for the (+6/0/90) and (-6/0/90) three-ply laminates. Unlike the symmetric and antisymmetric
angle-ply laminates examined herein, the value of this parameter for the (+0/0/90) and (-6/0/90)_
laminates depends on the number of plies, for a given material system and fiber angle. All values
of this coefficient for the three-ply laminates are between 0.911 and 1.48, with the smaller values

Values of the coefficient /12 that appears in the nondimensional Batdorf-Stein
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in the range 10 < 0 < 25 degrees.

The (+6/0/90), and (-6/0/90)_ laminates exhibit all six load-path eccentricity parameters,
which vary with the number of plies for a given material system and fiber angle 0. Values of ¢,
are presented in Table 57 and shown in figure 44 for the corresponding three-ply laminates. All
values of this parameter are between -0.715 and 0, and the magnitudes diminish as 0 increases.
Corresponding values of e, and e, are presented in Table 58 and shown in figure 45 for the three-
ply laminates. For this case, the values of both parameters are identical and are between -0.272
and 0. The largest magnitudes occur for values of 30 < 0 < 60 degrees. The effects of material
system and fiber angle on e,, are presented in Table 59 and shown in figure 46 for the three-ply

laminates. These results indicate a monotonic reduction in e,, as 0 increases. In addition, 0 <e,,
< 0.928.

Values of the load-path eccentricity parameters, ¢, and e, are given for the three-ply
laminates in Tables 60 and 61, respectively, and shown in figures 47 and 48, respectively, as a
function of the fiber angle 0. These results indicate that the values of these two parameters are
nonpositive and, for the most part, negative for the (+0/0/90) laminates. In contrast, the values of
these two parameters are nonnegative and, for the most part, positive for the (-6/0/90) laminates.
In addition, the magnitude of e, is generally larger than the corresponding magnitude of ¢, for

values of 6 > 45 degrees, and vice versa. In particular, 0.316 <l¢ | <0and 0.395 <le, | <0. The
corresponding parametric plot, with 0 as the parameter, is shown in figure 49 for the (+0/0/90)
laminates. Each parametric curve in this figure is also traversed counterclockwise as 6 increases
from O to 90 degrees, and the unfilled circular symbols correspond to sequential values of 0 in
15-degree increments. Examination of this figure indicates that the curves are generally not
symmetric about a line passing through the points of the curves that correspond to 6 =45 degrees.
The amount of asymmetry is also influenced slightly by the lamina material properties.

The combined effects of fiber orientation and number of plies on the values of the parameter
coefficient (D, /D,))" for (+6/0/90),_and (-6/0/90)_ laminates made of the P-100/3502 material
are indicated in Table 62 and shown in figure 50. These results indicate a monotonic reduction in
the value of (D,/D,,)" as 0 increases and a coalescence of the curves as the number of plies
increases. Associated with this coalescence of the curves is an increase in the value of the
coefficient and a reduction in the variation of the values as the fiber angle varies. Similar results
are presented in Table 63 and figure 51 for the flexural orthotropy parameter {3, and in Table 64
and figure 52 for the generalized Poisson’s ratio v,. The results for these two parameters also
show a coalescence of the curves as the number of plies increases, but the magnitudes of each
parameter generally decreases as the number of plies increases. Moreover, the curves coalesce to
a curve that is symmetric about the line given by 0 =45 degrees.

The combined effects of fiber orientation and number of plies on the values of the flexural
anisotropy parameters vy, and 0, are given in Tables 65 and 66, respectively, and shown in figures
53 and 54 respectively, for (+6/0/90)_and (-6/0/90)_laminates made of the P-100/3502 material.
The corresponding parametric plot, with 0 as the parameter, is shown in figure 55. Each
parametric curve in this figure is also traversed counterclockwise as 0 increases from O to 90
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degrees, and the curves for laminates with m < 3 are generally not symmetric about a line passing
through the points of the curves that correspond to 0 =45 degrees. However, the parametric
curves coalesce to a curve that exhibits symmetry about the line corresponding to 6 = 45 degrees
as the number of plies increases. In going from three to twenty-four plies, the curves shown in
these figures coalesce and the maximum magnitude of vy, and 9, are reduced by 55% and 36%,
respectively.
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function of the fiber angle 6 and number of plies for the (+6/0/90)_ and (-6/0/90)_laminates
made of the P-100/3502 material. These results indicate substantial reductions in the values of this
coefficient as the number of plies increases for 0 > 35 degrees. In going from three to twenty-four
plies, the maximum magnitude is reduced by approximately 32%.

Values of the coefficient /T2a are given in Table 67 and shown in figure 56 as a

The effects of fiber orientation and number of plies on the values of the load-path eccentricity
parameters e, and e, are given in Tables 68 and 69, respectively, and shown in figures 57 and
58, respectively, for the (+6/0/90)_and (-6/0/90)_laminates made of the P-100/3502 material.
The values of e, are nonpositive and negative for the most part, the values of e,, are nonnegative
and positive for the most part. The curves shown in each figure coalesce to a single curve with
substantially smaller magnitudes as the number of plies increases. In going from three to twenty-
four plies, the maximum magnitudes of ¢ , and e,, are reduced by approximately 89% and 85%,
respectively. Similar results for the load-path eccentricity parameters e, and e, are given in
Table 70 and shown in figure 59. For this case the values of these two parameters are identical
and are nonpositive and negative for the most part. The curves shown in figure 59 also coalesce

as the number of plies increases, with a reduction in the maximum magnitude of approximately
90%.

Values of the load-path eccentricity parameters e, and e, are given in Tables 71 and 72,
respectively, and shown in figure 60 and 61, respectively, for the (+6/0/90)_ and (-6/0/90)
laminates made of the P-100/3502 material as a function of fiber orientation and number of plies.
The corresponding parametric plot for the (+6/0/90) laminates, with 0 as the parameter, is shown
in figure 62. Each parametric curve in this figure is also traversed counterclockwise as 0
increases from 0 to 90 degrees. In going from three to twenty-four plies, the maximum magnitude
of ¢, and e, are reduced by approximately 90% and the parametric curves coalesce to a curve
that is symmetric about a line corresponding to 6 =45 degrees.

Concluding Remarks

A comprehensive development of nondimensional parameters and equations for nonlinear
and bifurcations analyses of quasi-shallow shells, based on the Donnell-Mushtari-Vlasov theory
for thin anisotropic shells, has been presented. A complete set of field equations for geometrically
imperfect shells that includes kinematic equations, isothermal constitutive equations for generally
laminated shells, equilibrium equations, boundary conditions, the compatibility equation, and the
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virtual work has been presented in terms of lines-of-curvature coordinates. A systematic
nondimensionalization of these equations has been developed, several new nondimensional
parameters have been defined, and a comprehensive stress-function formulation has been
presented that includes variational principles for equilibrium and compatibility. Bifurcation
analysis was also applied to the nondimensional nonlinear field equations and a comprehensive
set of bifurcation equations have been given that include the effects of pre-bifurcation rotations,
which are commonly neglected. These bifurcation equations also include a stress-function
formulation with variational principles for equilibrium and compatibility of the adjacent
equilibrium states.

An extensive collection of tables and figures has been presented that show the effects of
lamina material properties and stacking sequence on the nondimensional parameters. In
particular, results are presented for nine lamina material systems and several stacking sequences.
These stacking sequences include balanced symmetric angle-ply laminates, balanced
antisymmetric angle-ply laminates, symmetric quasi-isotropic laminates, antisymmetric quasi-
isotropic laminates, and unsymmetric quasi-isotropic laminates. Results are also given for
unbalanced, unsymmetric laminates composed of perpendicular unidirectional plies aligned with
the shell surface coordinate curves and angle plies. For each laminate configuration, the numerical
range of each nondimensional parameter, or the associated coefficient, has been given. These
numerical values provide reasonable estimates to boundaries of the nondimensional design space
for a wide range of practical laminates and highly tailored laminates. Overall, the analysis and
results should be of great interest to researchers developing structural design technology.
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Table 1. Lamina Properties

Material Systems
Lamina* S-glass- Kevlar M7/ AS4/ AS4/ Boron- M7/ P-100/
property™ | Boron-Al | © v | 49-epoxy | 5260 3502 | 3501-6 | epoxy | PETIS | 3502
E,, Msi 33 75 11.02 2.1 85 2001 | 2958 | 2035 | 535
E, Msi 21 1.7 0.8 1.457 1.64 1.30 2.68 1.16 0.73
v, 0.23 0.25 0.34 0.258 0.30 0.30 0.23 0.29 0.31
G, Msi 7.0 0.80 0.33 0.860 0.87 1.03 0.81 0.61 0.76

* The symbols L and T denote the longitudinal fiber and transverse matrix directions of a specially orthotropic lamina, respectively.
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Table 2. Values of =

D, + 2D

for [(+6/-0) ], [(-6/40)_], (+6/-0)_, and (-6/4+0), laminates

% D 1 1D22
(m=1,2, ..)
0 Material Systems
S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

deg | Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502

0 .697 .561 312 .368 403 478 .250 319 279

5 715 .596 .390 447 469 551 324 406 460
10 768 .699 .617 .674 .661 57 .539 .659 .954
15 .851 .860 .966 1.02 954 1.06 .880 1.04 1.57
20 957 1.06 1.38 1.41 1.30 1.40 1.30 1.47 2.09
25 1.08 1.28 1.77 1.77 1.64 1.72 1.72 1.86 2.42
30 1.19 1.48 2.09 2.06 1.92 1.96 2.08 2.16 2.60
35 1.29 1.65 2.30 2.26 2.12 2.13 2.33 2.36 2.70
40 1.36 1.75 242 2.36 2.24 2.23 2.47 2.46 2.74
45 1.38 1.79 2.46 2.40 2.28 2.26 2.51 2.50 2.76
50 1.36 1.75 242 2.36 2.24 2.23 2.47 2.46 2.74
55 1.29 1.65 2.30 2.26 2.12 2.13 2.33 2.36 2.70
60 1.19 1.48 2.09 2.06 1.92 1.96 2.78 2.16 2.60
65 1.08 1.28 1.77 1.77 1.64 1.72 1.72 1.86 242
70 957 1.06 1.38 1.41 1.30 1.40 1.30 1.47 2.09
75 851 .860 .966 1.02 954 1.06 .880 1.04 1.57
80 768 .699 617 .674 .661 757 .539 .659 .954
85 715 .596 .390 447 469 551 324 406 460
90 .697 .561 312 .368 403 478 .250 319 279

Table 3. Values of (2)4 and (%)4

1 1

for [(+6/-0) 1., [(-6/+0), 1., (+6/-0),, and (-6/+6)_

ajy

laminates (m =1, 2, ...)

Material Systems

0,
S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

deg Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502

0 1.12 1.45 1.93 1.97 1.83 1.98 1.82 2.05 2.93

5 1.12 1.44 1.92 1.96 1.82 1.97 1.82 2.04 2.90
10 1.11 1.43 1.89 1.93 1.80 1.92 1.80 2.00 2.79
15 1.11 1.40 1.83 1.86 1.74 1.85 1.76 1.93 2.56
20 1.10 1.36 1.74 1.75 1.65 1.73 1.68 1.81 2.24
25 1.08 1.30 1.61 1.61 1.54 1.59 1.57 1.66 1.92
30 1.07 1.24 1.45 1.45 1.41 1.43 1.43 1.48 1.63
35 1.05 1.16 1.29 1.29 1.26 1.28 1.28 1.31 1.38
40 1.02 1.08 1.14 1.14 1.13 1.13 1.14 1.15 1.17
45 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
50 977 .927 .878 .879 .888 .883 .881 .873 .852
55 .957 .863 774 775 791 782 780 765 125
60 .939 .809 .689 .688 712 .697 .698 .675 .615
65 924 167 .623 .620 .650 .629 .637 .604 522
70 912 136 576 .570 .604 577 .595 552 446
75 903 114 .546 538 575 .542 .570 519 391
80 .898 700 .529 .519 557 .520 .556 .500 .359
85 .894 .692 521 .509 .548 .508 .550 491 .345
90 .893 .690 519 .507 .546 .505 .549 489 342
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Table 4. Values of v, =

—an

napad

(-0/40), laminates (m=1, 2, ...)

Vv, = —12
and v, =50

D12

for [(+0/-0)_l, [(-6/+0)_], (+6/-0)_, and

Material Systems

0,
S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/
deg | Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502
0 183 119 .092 .066 .089 .076 .069 .069 .036
5 .189 131 118 .092 A11 101 .094 .098 .097
10 206 164 .193 .168 175 .170 .165 182 263
15 233 217 .309 282 272 272 278 .309 475
20 267 283 447 414 .388 .388 418 453 .654
25 .305 354 578 538 .503 497 .559 .586 170
30 342 421 .684 .636 .598 .583 .678 .688 .836
35 374 475 756 703 .666 .642 761 155 .872
40 .396 510 .796 741 706 .676 .809 791 .889
45 403 522 .809 753 719 .687 .824 .803 .895
50 .396 510 796 741 706 .676 .809 791 .889
55 374 475 156 703 .666 .642 761 155 .872
60 342 421 .684 .636 .598 .583 .678 .688 .836
65 .305 354 578 .538 .503 497 .559 .586 170
70 267 283 447 414 .388 .388 418 453 .654
75 233 217 .309 282 272 272 278 .309 475
80 206 164 .193 .168 175 .170 .165 182 263
85 .189 131 118 .092 11 101 .094 .098 .097
90 183 119 .092 .066 .089 .076 .069 .069 .036
Table 5. Values of w= % for [(+0/-0), ], [(-0/+0) ], (+6/-0) , and (-0/+0)_ laminates
11422
(m=1,2, ..)
0 Material Systems
S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/
deg | Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502
0 1.70 2.11 441 3.23 3.08 2.40 5.43 391 4.08
5 1.64 1.98 3.50 2.71 2.65 2.10 4.22 3.12 2.63
10 1.50 1.65 2.08 1.75 1.82 1.48 2.43 1.85 1.09
15 1.30 1.26 1.07 973 1.09 902 1.25 931 230
20 1.08 .898 413 420 .543 450 518 328 -.255
25 .873 .592 -.021 .037 154 122 .031 -.072 -.522
30 .697 .355 -.304 -.219 -.114 -.104 -.292 -.331 -.665
35 564 186 -.478 -.378 -.285 -.247 -.493 -.486 -.740
40 481 .086 -.570 -.463 -.379 -.326 -.601 -.567 =777
45 453 .053 -.599 -.490 -.409 -.351 -.635 -.593 -.788
50 481 .086 -.570 -.463 -.379 -.326 -.601 -.567 =777
55 564 .186 -478 -.378 -.285 -.247 -.493 -.486 -.740
60 .697 .355 -.304 -.219 -.114 -.104 -.292 -.331 -.665
65 .873 592 -.021 .037 154 122 031 -.072 -.522
70 1.08 .898 413 420 .543 450 518 328 -.255
75 1.30 1.26 1.07 973 1.09 902 1.25 931 230
80 1.50 1.65 2.08 1.75 1.82 1.48 2.43 1.85 1.09
85 1.64 1.98 3.50 2.71 2.65 2.10 4.22 3.12 2.63
90 1.70 2.11 441 3.23 3.08 2.40 5.43 391 4.08
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Table 6. Values of 2

h

laminates (m =1, 2, ...)

ajapD Dy)

i for [(+0/-0) 1, [(-6/+0) 1., (+6/-0) , and (-6/+8)_

0 Material Systems
S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

deg | Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETL5 3502

0 .983 .993 .996 .998 .996 .997 .998 .998 .999

5 .982 991 .993 .996 .994 .995 .996 .995 .995
10 979 .986 981 .986 985 985 .986 .983 .965
15 973 976 951 .960 962 962 .960 951 .880
20 964 .959 .895 911 922 921 908 .891 157
25 952 935 .816 .843 .865 .868 .829 .810 .638
30 .940 .907 730 771 .801 .813 735 726 .549
35 927 .880 .655 J11 746 767 .648 .656 490
40 918 .860 .606 672 .708 737 .588 612 457
45 915 .853 .588 .658 .695 726 .566 .596 446
50 918 .860 .606 .672 708 137 .588 .612 457
55 927 .880 .655 11 746 767 .648 .656 490
60 940 .907 730 771 .801 .813 735 726 .549
65 952 935 .816 .843 .865 .868 .829 .810 .638
70 .964 .959 .895 911 922 921 .908 .891 757
75 973 976 951 .960 962 962 .960 951 .880
80 979 .986 981 .986 .985 .985 .986 .983 .965
85 .982 991 .993 .996 .994 .995 .996 .995 .995
90 .983 .993 .996 .998 .996 .997 .998 .998 .999

— D 16 . .
Table 7. Values of Vs = 7(])3 5 ) n  for (+0/-0) laminates and -y, for (-0/40), laminates
1122
0 Material Systems
S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

deg | Boron/Al Epoxy Epoxy | IM7/5260 | AS413502 | S o epoxy PETLS 3500

0 0 0 0 0 0 0 0 0 0

5 .032 .069 115 116 .105 113 110 123 .184
10 .063 136 228 230 .208 222 219 .243 .356
15 .090 .199 333 335 .303 322 322 .355 496
20 112 .255 425 424 .386 405 414 449 .589
25 127 .300 496 493 452 469 488 S19 .642
30 .133 332 .543 .538 497 S12 538 .565 .670
35 131 348 .568 562 522 .536 564 .589 .683
40 119 .347 574 .569 527 544 567 .595 .688
45 .099 329 .561 .558 515 .536 .549 .585 .686
50 075 .295 528 530 483 S12 .509 557 .676
55 .049 248 474 482 431 471 443 510 .657
60 .025 .193 .394 410 .358 410 352 437 .621
65 .006 137 293 317 .269 .330 243 338 .557
70 -.007 .088 186 213 177 238 136 225 449
75 -012 .049 .094 119 .098 .149 .055 122 .296
80 -012 024 .035 .053 044 079 010 051 .140
85 -.007 .009 .009 018 015 .032 -.003 015 042
90 0 0 0 0 0 0 0 0 0
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Table 8. Values of , =

D26

———; for (+0/-8); laminates and -0, for (-6/+8), laminates

(D)
0 Material Systems
S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/
deg | BorowAl | Lol Epoxy | M7/52600 | AS413502 | S0 epoxy PETLS 1500
0 0 0 0 0 0 0 0 0 0
5 -.007 .009 .009 018 015 .032 -.003 015 .042
10 -.012 .024 .035 .053 .044 .079 .010 .051 .140
15 -.012 .049 .094 119 .098 .149 .055 122 296
20 -.007 .088 186 213 177 238 136 225 449
25 .006 137 293 317 .269 .330 243 .338 .557
30 025 .193 .394 410 .358 410 352 437 .621
35 .049 .248 474 482 431 471 443 510 .657
40 .075 295 528 .530 483 512 .509 .557 .676
45 .099 .329 561 .558 515 .536 .549 .585 .686
50 119 .347 574 .569 527 544 567 .595 .688
55 131 .348 .568 562 522 .536 564 .589 .683
60 133 332 .543 .538 497 512 .538 .565 .670
65 127 .300 496 493 452 469 488 519 .642
70 112 255 425 424 .386 405 414 449 .589
75 .090 .199 333 335 .303 322 322 355 496
80 .063 136 228 230 208 222 219 243 .356
85 .032 .069 115 116 105 113 110 123 184
90 0 0 0 0 0 0 0 0 0
2 1/4
Table 9. Values of e,=B 16( D 1a1111322 ) for (-6/+0) laminates and -¢, for (+6/-0) laminates
0 Material Systems
; S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/
deg | Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 | o epoxy PETLS 3502
0 0 0 0 0 0 0 0 0 0
5 .038 .081 134 135 122 131 128 143 213
10 074 160 268 .269 243 260 256 286 426
15 107 236 405 403 364 .386 .387 430 .650
20 134 .307 .549 .538 484 .508 527 .581 .898
25 154 371 702 .675 .604 .624 .680 740 1.16
30 164 423 .860 .805 716 127 .845 .899 1.41
35 163 457 1.00 914 .808 .807 1.00 1.04 1.61
40 .149 466 1.09 978 .860 .852 1.12 1.12 1.74
45 125 446 1.10 .980 .855 .852 1.12 1.13 1.77
50 .094 .397 1.01 912 187 .803 1.00 1.05 1.71
55 .060 .326 .835 783 .667 710 789 .897 1.55
60 .030 246 .624 .614 515 .583 552 .694 1.31
65 .007 170 415 434 .359 439 .338 482 1.01
70 -.008 105 .240 270 222 298 173 292 .686
75 -.014 .058 115 144 118 179 .066 .148 .388
80 -.014 .028 .042 .063 052 .092 012 .059 167
85 -.008 011 .010 .020 018 .037 -.004 017 .049
90 0 0 0 0 0 0 0 0 0
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Table 10. Values of ex = B26(Dlal%22

2

1/4

) for (-6/+0) laminates and -¢,, for (+6/-0) laminates

Material Systems

0,
S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

deg Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502

0 0 0 0 0 0 0 0 0 0

5 -.008 011 .010 .020 .018 .037 -.004 .017 .049
10 -014 028 042 .063 052 092 012 .059 167
15 -014 .058 115 144 118 179 066 .148 .388
20 -.008 .105 240 270 222 .298 173 292 .686
25 .007 170 415 434 359 439 .338 482 1.01
30 .030 246 .624 .614 515 .583 552 .694 1.31
35 .060 .326 .835 7183 .667 710 .789 .897 1.55
40 094 397 1.01 912 187 .803 1.00 1.05 1.71
45 125 446 1.10 .980 .855 .852 1.12 1.13 1.77
50 .149 466 1.09 978 .860 .852 1.12 1.12 1.74
55 .163 457 1.00 914 .808 .807 1.00 1.04 1.61
60 .164 423 .860 .805 716 727 .845 .899 1.41
65 154 371 702 .675 .604 .624 .680 740 1.16
70 134 307 .549 538 484 .508 527 581 .898
75 .107 236 405 403 364 .386 .387 430 .650
80 074 .160 .268 269 .243 .260 256 .286 426
85 .038 .081 134 135 122 131 128 143 213
90 0 0 0 0 0 0 0 0 0

Table 11. Values of Vo= W for [(+6/-0)_]; and -y, for [(-0/+0), ], P-100/3502 laminates
1122

0, Stacking sequence number, m
deg m=1 m=2 m=3 m=4 m=>5 m=6 m=12

0 0 0 0 0 0 0 0

5 184 .092 061 046 .037 031 015

10 356 178 119 .089 071 .059 .030

15 496 248 .165 124 .099 .083 041

20 .589 .294 .196 .147 118 .098 .049

25 .642 321 214 .160 128 .107 .053

30 .670 335 223 167 134 112 056

35 .683 342 228 71 137 114 057

40 .688 344 229 172 138 115 057

45 .686 343 229 171 137 114 057

50 .676 .338 .225 .169 135 113 .056

55 .657 328 219 .164 131 .109 .055

60 .621 310 207 155 124 .103 .052

65 557 278 .186 139 11 .093 046

70 449 225 150 112 .090 075 .037

75 .296 .148 .099 074 .059 .049 025

80 .140 .070 047 .035 .028 .023 012

85 .042 .021 .014 011 .008 .007 .004

90 0 0 0 0 0 0 0

115




Table 12. Values of §, =

(D),D3,)

0, Stacking sequence number, m
deg m=1 m=2 m=3 m=4 m=S5 m=6 m =12
0 0 0 0 0 0 0

5 .042 021 014 011 .008 .007 .004
10 .140 .070 .047 .035 028 023 012
15 .296 .148 .099 074 .059 .049 .025
20 449 225 150 112 .090 075 .037
25 557 278 .186 139 11 .093 .046
30 .621 310 .207 .155 124 .103 052
35 .657 328 219 164 131 .109 .055
40 .676 338 225 .169 135 113 056
45 .686 343 229 71 137 114 057
50 .688 344 229 172 138 115 057
55 .683 342 228 171 137 114 057
60 .670 335 .223 167 134 112 056
65 .642 321 214 .160 128 107 .053
70 .589 .294 .196 147 118 .098 .049
75 496 248 .165 124 .099 .083 041
80 .356 178 119 .089 071 .059 .030
85 .184 092 061 .046 037 031 015
90 0 0 0 0 0 0 0

Table 13. Values of e = B“”(D1 D,,

2
an
1

—Px o for [(+6/-0),]; and -8, for [(-6/+0),]; P-100/3502 laminates

) for (-6/+0)_and -¢, for (+0/-0)_l; P-100/3502

laminates
0, Stacking sequence number, m
deg m=1 m=2 m=3 m=4 m=>5 m=6 m=12 m =24
0 0 0 0 0 0 0 0 0
5 213 .107 071 .053 .043 036 018 .009
10 426 213 142 .106 .085 071 .035 018
15 .650 325 217 .163 130 .108 054 027
20 .898 449 299 225 .180 150 075 037
25 1.16 581 387 290 232 .194 .097 .048
30 1.41 705 470 352 282 .235 117 .059
35 1.61 .806 537 403 322 269 134 067
40 1.74 .869 .580 435 .348 .290 .145 072
45 1.77 .887 591 443 355 .296 .148 074
50 1.71 .854 .570 427 342 285 142 071
55 1.55 774 516 .387 310 258 129 .065
60 1.31 .653 435 327 261 218 .109 .054
65 1.01 .504 336 252 201 .168 .084 042
70 .686 343 229 171 137 114 057 029
75 .388 .194 129 .097 078 065 032 016
80 167 .084 .056 042 .033 .028 014 .007
85 .049 024 016 012 .010 .008 .004 .002
90 0 0 0 0 0 0 0 0
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Table 14. Values of ex = st(

) 1/4
ax
1

) for (-6/+6), and -e,, for (+6/-6) ], P-100/3502

Dl D22
laminates

0, Stacking sequence number, m
deg m=1 m=2 m=3 m=4 m=35 m=6 m =12 m =24

0 0 0 0 0 0 0 0

5 .049 024 016 012 010 .008 .004 .002
10 167 .084 .056 042 .033 .028 014 .007
15 .388 .194 129 .097 078 065 032 016
20 .686 343 229 171 137 114 057 .029
25 1.01 .504 336 252 201 .168 .084 042
30 1.31 .653 435 327 261 218 .109 054
35 1.55 774 .S16 .387 310 258 129 .065
40 1.71 .854 .570 427 342 .285 142 071
45 1.77 .887 591 443 355 .296 .148 074
50 1.74 .869 .580 435 .348 .290 .145 072
55 1.61 .806 .537 403 322 .269 134 .067
60 1.41 705 470 352 282 .235 117 .059
65 1.16 581 .387 .290 232 .194 .097 048
70 .898 449 .299 .225 .180 150 075 .037
75 .650 325 217 .163 130 .108 054 027
80 426 213 142 .106 .085 071 035 018
85 213 107 071 .053 .043 .036 018 .009
90 0 0 0 0 0 0 0 0

Table 15. Values of v, =722 for [(£45/0/90),],, [(+45/0/90),],. [(0/90/245), ],

[(0/90/%45)_],, (x45/0/90)_, and (0/90/+45)_ laminates (m=1, 2, ...)

Material Systems

S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/
Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETL5 3502
281 272 325 299 .303 284 323 312 316

117




Table 16. Values of (L)

D22

1

for [(#45/0/90) ], and [(45/0/90) ], laminates

Material Systems

m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502
1 1.01 1.04 1.07 1.07 1.06 1.06 1.07 1.07 1.08
2 1.01 1.03 1.04 1.04 1.04 1.04 1.04 1.05 1.05
3 1.01 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.04
4 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.03 1.03
5 1.00 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02
6 1.00 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02
7 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.02
8 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01

%
Table 17. Values of (%) for [(0/90/+45)_]; and [(0/90/+45) ], laminates
22
Material Systems

m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3500
1 1.03 1.10 1.14 1.14 1.14 1.14 1.14 1.15 1.16
2 1.01 1.04 1.06 1.06 1.06 1.06 1.06 1.06 1.07
3 1.01 1.03 1.04 1.04 1.04 1.04 1.04 1.04 1.04
4 1.01 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03
5 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.03
6 1.00 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02
7 1.00 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02
8 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02

i
Table 18. Values of (%) for (x45/0/90)  unsymmetric laminates
22
Material Systems

m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 1502
1 .956 .868 .804 .802 814 .805 .810 197 172
2 .989 .966 .950 .949 952 .950 951 .948 942
3 .995 .985 977 977 979 978 978 977 974
4 997 991 .987 .987 .988 .987 .988 .987 985
5 .998 .995 992 992 992 992 992 992 991
6 .999 .996 .994 .994 995 .994 .994 .994 .993
7 .999 997 .996 .996 .996 .996 .996 .996 995
8 .999 .998 997 997 997 997 997 997 .996
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Table 19. Values of (D“)4

D22

1

for (0/90/+45), unsymmetric laminates

Material Systems

m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3500
1 1.05 1.15 1.24 1.25 1.23 1.24 1.24 1.26 1.30
2 1.01 1.04 1.05 1.05 1.05 1.05 1.05 1.06 1.06
3 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.03
4 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02
5 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
6 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01
7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01
8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 20. Values of p=22"2Ps for [(+45/0/90) ], and [(+45/0/90) ], laminates
\ D 1 1D22 m m
Material Systems

m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 | o epoxy PETLS 3500
1 1.28 1.57 2.02 1.98 1.90 1.89 2.05 2.04 222
2 1.14 1.27 1.45 1.44 1.40 1.40 1.46 1.46 1.53
3 1.09 1.17 1.29 1.28 1.26 1.26 1.30 1.30 1.33
4 1.07 1.13 1.21 1.21 1.19 1.19 1.22 1.22 1.25
5 1.05 1.10 1.17 1.16 1.15 1.15 1.17 1.17 1.19
6 1.04 1.08 1.14 1.13 1.13 1.12 1.14 1.14 1.16
7 1.04 1.07 1.12 1.12 1.11 1.11 1.12 1.12 1.14
8 1.03 1.06 1.10 1.10 1.09 1.10 1.11 1.11 1.12

Table 21. Values of = 22422% for [(0/90+45) ], and [(0/90/+45) ], laminates
DIIDZZ m m
Material Systems

m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 | '\ epoxy PETLS 3502
I 757 571 344 362 398 406 327 334 266
2 874 770 640 651 671 676 631 634 594
3 915 843 752 759 774 77 745 747 719
4 .936 .881 .810 .816 827 .830 .805 .807 785
5 949 904 .847 851 .861 .862 .842 .844 .826
6 957 .920 871 875 .883 .885 .868 .869 .854
7 963 931 .889 .892 .899 901 .886 .887 874
8 .968 .939 .903 .906 912 913 .900 901 .889
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Table 22. Values of p =222« for (+45/0/90) and (0/90/+45) unsymmetric laminates

VDD,
Material Systems
m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/
Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502
1 1.00 1.04 1.10 1.10 1.09 1.10 1.09 1.11 1.14
2 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
j— D 12 .
Table 23. Values of v, = /Duba for [(£45/0/90) ], and [(x45/0/90)_], laminates
Material Systems
m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/
Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502
1 371 452 .663 .617 .596 .569 .672 .654 716
2 325 .356 475 .440 434 412 477 463 489
3 310 327 421 .390 387 .366 422 .409 426
4 .303 313 .396 .366 .365 .345 .396 .383 .397
5 298 304 381 352 352 332 .380 .368 .380
6 .296 .299 371 .343 344 324 371 358 .369
7 293 .295 .365 336 338 318 ,364 352 .361
8 292 292 .360 332 333 314 .358 .346 .355
D .
Table 24. Values of v, =———"2— for [(0/90/+45 and [(0/90/+45 laminates
v= D.po [( uls [( Il
Material Systems
m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/
Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502
1 203 135 .108 .091 .106 .092 .100 .093 074
2 241 .199 206 .185 .196 .180 201 .192 .183
3 254 222 243 221 229 212 239 229 224
4 261 234 263 239 247 229 259 249 245
5 265 241 275 251 257 .240 271 261 259
6 268 246 283 259 265 247 .280 .269 268
7 270 250 .289 264 270 252 .286 275 275
8 271 253 .293 268 274 256 .290 279 .280
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Table 25. Values of v, = 2e_ for (x45/0/90),_ and (0/90/+45)_ unsymmetric laminates

vVD1iDyy
Material Systems
m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/
Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502
1 283 283 357 .329 .329 311 .353 .345 .360
2 281 273 327 301 .304 .286 325 314 319
3 281 272 326 .299 303 284 324 312 317
4 281 272 326 .299 303 284 323 312 316
5 281 272 325 299 303 284 323 312 316
6 281 272 325 299 303 284 323 312 316
7 281 272 325 299 .303 284 323 312 316
8 281 272 325 299 .303 284 323 312 316
— D 16 .
Table 26. Values of Yo = 7(133 5 ) m for [(£45/0/90), ], laminates
1122
Material Systems
m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/
Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502
1 .036 114 182 182 .170 176 178 .189 217
2 015 .045 .069 .069 .065 067 067 071 .080
3 .009 027 042 042 .039 041 .040 043 .048
4 .006 .020 .030 .030 028 .029 .029 031 035
5 .005 015 .023 023 022 023 022 .024 027
6 .004 013 019 019 018 019 018 .020 022
7 .003 011 016 016 015 016 016 017 019
8 .003 .009 014 014 013 014 013 014 016
— D 16 .
Table 27. Values of Yo = 7(133 5 ) i for [(0/90/£45)_]; laminates
1122
Material Systems
m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/
Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502
1 010 028 .039 .039 .038 .039 .038 .040 .044
2 .008 023 .033 .034 032 .033 032 034 .038
3 .006 018 .026 .026 025 .026 025 027 .030
4 .005 014 021 021 .020 021 .020 022 .024
5 .004 012 017 018 017 017 017 018 .020
6 .003 .010 015 015 014 015 014 015 017
7 .003 .009 013 013 012 013 013 014 015
8 .003 .008 012 012 011 012 011 012 013
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Table 28. Values of Vo= (3])16)1/4 for (+45/0/90), unsymmetric laminates

11

Material Systems

m - - _

Boron/Al SEI%E‘;;/ Kgﬁ(’;‘;‘;g/ IM7/5260 | AS4/3502 3?314 / 6 lzg(r)‘:; PIEI\%Z 5 P3 5]83/
i 048 165 280 283 260 277 268 295 351
2 011 036 054 055 051 054 053 056 064
3 .005 016 023 024 022 023 023 024 027
4 .003 009 013 013 012 013 013 013 015
5 002 .006 .008 .008 .008 .008 .008 .009 010
6 001 .004 .006 .006 .005 .006 .006 .006 .007
7 001 .003 004 004 .004 .004 004 .004 .005
8 001 .002 .003 .003 .003 .003 .003 .003 004

D . .
Table 29. Values of Y» = 7( S 1)]6 )1/4 for (0/90/+45), unsymmetric laminates
1122
Material Systems

m - - _

Boron/Al SEI%E‘;;/ Kggf:;g/ IM7/5260 | AS4/3502 3’;? / s lzgif; PIE%Z s P3 5183/
I ~043 ~124 181 ~182 172 ~180 ~176 ~187 ~209
2 011 -033 049 049 -047 049 -048 -051 056
3 005 015 -022 -022 -021 -022 -022 -023 -026
4 003 -009 -013 -013 012 -013 -012 -013 015
5 -002 005 008 008 008 008 -.008 -.008 009
6 -.001 004 006 006 -.005 006 006 006 -.007
7 -.001 -.003 -.004 -.004 -.004 -.004 -.004 -.004 -.005
8 001 002 003 003 003 003 003 -003 004

Table 30. Values of 6b:7Dz§ m for [(£45/0/90), ] laminates
(D1D3,
Material Systems

m - - _

Boron/Al SEia;;/ K;ﬁg;‘;g/ IM7/5260 | AS4/3502 3’;;‘ / s lz;g‘::; Pg\g s P3 ;8(2)/
T 037 123 207 207 191 200 202 216 253
2 015 047 075 075 070 073 073 078 089
3 .009 028 044 044 042 044 043 046 052
4 .007 020 031 031 029 031 030 032 037
5 005 016 024 024 023 024 023 025 028
6 004 013 020 020 018 019 019 020 023
7 004 011 016 017 016 016 016 017 019
8 .003 .009 014 014 013 014 014 015 017
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Table 31. Values of §, =

11

22

— D for [(0/90/245),]; laminates

Material Systems

m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502
1 011 .034 .050 .051 .048 .051 .048 .052 .059
2 .008 .025 .037 .038 .036 .037 .036 .039 .043
3 .006 019 028 028 027 028 027 029 032
4 .005 015 022 022 021 022 021 023 025
5 .004 .012 .018 .018 .017 .018 .018 .019 .021
6 .003 .010 .015 016 .015 .015 .015 .016 .018
7 .003 .009 .013 014 .013 .013 .013 014 .016
8 .003 .008 012 012 011 012 012 012 014

Table 32. Values of 8, = % for (+45/0/90), unsymmetric laminates
(DIIDQZ)
Material Systems

m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 | epoxy PETLS 3502
1 .043 124 181 182 172 .180 176 187 209
2 011 033 049 049 047 049 048 051 056
3 .005 015 022 022 021 022 022 023 026
4 .003 .009 .013 .013 012 .013 .012 .013 .015
5 .002 .005 .008 .008 .008 .008 .008 .008 .009
6 .001 .004 .006 .006 .005 .006 .006 .006 .007
7 .001 .003 .004 .004 .004 .004 .004 .004 .005
8 001 002 .003 .003 .003 .003 .003 .003 004

Table 33. Values of §, = % for (0/90/+45), unsymmetric laminates
(D)D3,)
Material Systems

m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 | o epoxy PETLS 3502
1 048 165 -280 -283 -260 ~277 ~268 -295 -351
2 -011 -036 -054 -.055 -051 -054 -053 -056 -.064
3 -.005 -016 -023 -.024 -022 -023 -023 -.024 -027
4 -.003 -.009 -013 -013 -012 -013 -013 -013 -015
5 -.002 -.006 -.008 -.008 -.008 -.008 -.008 -.009 -010
6 -.001 -.004 -.006 -.006 -.005 -.006 -.006 -.006 -007
7 -.001 -.003 -.004 -.004 -.004 -.004 -.004 -.004 -.005
8 -.001 -.002 -.003 -.003 -.003 -.003 -.003 -.003 -.004
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h
aj;a5,D( Dy,)

Table 34. Values of 2 i for [(£45/0/90), ], and [(£45/0/90), ], laminates

Material Systems
m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/
Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS5 3500
1 .993 1.03 1.06 1.07 1.06 1.06 1.07 1.07 1.09
2 976 994 .999 1.01 1.00 1.01 1.00 1.01 1.01
3 970 .983 .980 988 .984 .990 981 985 988
4 .968 978 971 979 976 .982 972 976 978
5 .966 975 965 974 971 977 967 .970 972
6 965 972 962 970 .968 974 963 967 .968
7 .964 971 .960 .968 .966 971 961 .964 .965
8 964 970 958 .966 964 970 959 .963 963
h .
Table 35. Values of JTZ(a,a30D ;D) for [(0/90/%45) ], and [(0/90/+45) ], laminates
Material Systems
m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/
Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 1502
1 931 916 878 .889 .891 .898 875 .882 875
2 944 935 .905 914 915 922 .904 .908 .903
3 .949 944 917 926 927 933 917 921 916
4 952 .948 923 933 933 939 923 927 924
5 953 951 928 937 937 942 928 932 928
6 954 953 930 939 939 945 931 935 931
7 955 954 933 941 941 947 933 .937 934
8 956 955 934 .943 .943 948 934 938 936
Table 36. Values of 2(a,, aZ?D D) for (x45/0/90) and (0/90/+45)_unsymmetric laminates
Material Systems
m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/
Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502
1 962 981 .990 1.00 .993 1.00 .988 .999 1.01
2 .960 963 948 957 955 961 .949 953 952
3 .960 .963 .946 955 953 .959 947 951 .949
4 .960 962 .946 954 953 959 .946 950 949
5 .960 962 .946 954 953 .959 .946 .950 949
6 .960 962 .946 954 953 .959 .946 .950 .949
7 .960 962 .946 954 953 .959 .946 .950 .949
8 .960 962 .946 954 953 959 .946 .950 .949
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Table 37. Values of en = BII(DIII

12
ay

) for (x45/0/90)  unsymmetric laminates

Material Systems

m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/
Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502
1 025 -.020 -.008 -.020 -.021 -.039 011 -.014 -.015
2 012 -.009 -.003 -.008 -.009 -.016 .004 -.006 -.006
3 .008 -.006 -.002 -.005 -.006 -.010 .003 -.004 -.004
4 .006 -.004 -.002 -.004 -.004 -.008 .002 -.003 -.003
5 .005 -.003 -.001 -.003 -.003 -.006 .002 -.002 -.002
6 .004 -.003 -.001 -.003 -.003 -.005 .001 -.002 -.002
7 .003 -.002 -.001 -.002 -.002 -.004 .001 -.002 -.002
8 .003 -.002 -.001 -.002 -.002 -.004 .001 -.001 -.001

a 1/2
Table 38. Values of ¢ =Bu (ﬁ) for (0/90/+45), unsymmetric laminates
Material Systems

m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/
Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502
1 -.127 =277 -417 -.408 -.387 -.389 -418 -424 -.468
2 -.066 -.151 -.236 -.231 -.218 -.220 -.236 -.241 -.269
3 -.044 -.103 -.162 -.158 -.149 -.150 -.161 -.165 -.185
4 -.033 -.078 -.122 -.120 -.113 -.114 -.122 -.125 -.140
5 -.027 -.062 -.098 -.096 -.091 -.092 -.098 -.100 -.113
6 -.022 -.052 -.082 -.080 -.076 -.076 -.082 -.084 -.094
7 -.019 -.045 -.070 -.069 -.065 -.066 -.070 -.072 -.081
8 -.017 -.039 -.062 -.060 -.057 -.057 -.062 -.063 -.071

1/4

1/4
apa .
Table 39. Values of e, = Blz( Sute ) and eq = Bss(iD“D” ) for (£45/0/90), unsymmetric
D11D22 1122 m
laminates
Material Systems
m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/
Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETL5 3502
1 -.079 -.151 -.256 -.246 -.229 -.226 -.262 -.261 -.297
2 -.039 -.074 -.123 -.118 -.110 -.108 -.126 -.124 -.140
3 -.026 -.049 -.082 -.078 -.073 -.072 -.084 -.083 -.093
4 -.020 -.037 -.061 -.059 -.055 -.054 -.063 -.062 -.070
5 -016 -.030 -.049 -.047 -.044 -.043 -.050 -.050 -.056
6 -013 -.025 -.041 -.039 -.037 -.036 -.042 -.041 -.046
7 -011 -.021 -.035 -.034 -.031 -.031 -.036 -.035 -.040
8 -.010 -.018 -.031 -.029 -.028 -.027 -.031 -.031 -.035
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Table 40. Values of e, = BIZ(M

1/4
apja
=B 11422
) and “6 66(IDIIDZZ

| for (0/90/+45), unsymmetric

D 1 1D22
laminates
Material Systems
m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/
Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502
1 .079 151 .256 246 229 226 262 261 .297
2 .039 074 123 118 110 .108 126 124 .140
3 .026 .049 .082 078 073 072 .084 .083 .093
4 .020 .037 061 .059 055 054 .063 062 .070
5 016 .030 .049 .047 .044 .043 .050 .050 056
6 013 025 .041 .039 .037 .036 .042 .041 .046
7 011 021 035 034 031 031 .036 .035 .040
8 010 018 031 .029 028 027 031 031 .035
2 1/4 2 1/4
a a .
Table 41. Values of ¢, = Bls( = ) and e, = st( 22 ) for [(x45/0/90) ], laminates
D, D D, Dy m
Material Systems
m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/
Boron/Al Epory Epoxy IM7/5260 | AS4/3502 | o epoxy PETLS 3500
1 -014 -.044 -.070 -.070 -.066 -.068 -.068 -073 -.083
2 -.007 -021 -033 -033 -031 -032 -032 -034 -.039
3 -.005 -014 -022 -022 -.020 -021 -021 -022 -.025
4 -.003 -010 -016 -016 -015 -016 -016 -017 -019
5 -.003 -.008 -.013 -013 -012 -013 -012 -013 -015
6 -.002 -.007 -011 -011 -010 -010 -010 -011 -012
7 -.002 -.006 -.009 -.009 -.009 -.009 -.009 -.009 -.011
8 -.002 -.005 -.008 -.008 -.007 -.008 -.008 -.008 -.009
) 1/4 > 1/4
a a .
Tuble 42. Values of ¢, =Bu{5*h|  and e =855 | for [(0/90/£45),], laminates
DDy, D, Dy, m
Material Systems
m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/
Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502
1 -013 -.039 -.058 -.058 -.055 -.058 -.056 -.060 -.067
2 -.007 -.020 -.030 -.030 -.028 -.030 -.029 -.031 -.034
3 -.004 -013 -.020 -.020 -019 -.020 -.020 -.021 -.023
4 -.003 -010 -015 -015 -014 -015 -015 -016 -018
5 -.003 -.008 -012 -012 -012 -012 -012 -013 -014
6 -.002 -.007 -010 -010 -010 -010 -010 011 -012
7 -.002 -.006 -.009 -.009 -.008 -.009 -.009 -.009 -010
8 -.002 -.005 -.008 -.008 -.007 -.008 -.008 -.008 -.009
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Table 43. Values of e, = Bm(

unsymmetric laminates

2
ap
DDy,

1/4

A
and e, =B (
) 2 % DDy,

2

1/4

) for (£45/0/90),, and (0/90/+45)_

Material Systems

m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETL5 3502
1 -.027 -.084 -.131 -.131 -.123 -.129 -.127 -.136 -.155
2 -.014 -.041 -.063 -.063 -.059 -.062 -.061 -.065 -.073
3 -.009 -.028 -.042 -.042 -039 -.041 -.041 -.043 -.048
4 -.007 -021 -031 -031 -030 -031 -030 -032 -036
5 -.005 -.017 -.025 -.025 -.024 -.025 -.024 -.026 -.029
6 -.005 -.014 -.021 -.021 -.020 -.020 -.020 -.022 -.024
7 -.004 -.012 -.018 -.018 -.017 -.018 -.017 -.018 -.021
8 -.003 -.010 -.016 -.016 -.015 -.015 -.015 -.016 -.018

a 172
Table 44. Values of e = Bzz(]ﬁ) for (x45/0/90) _ unsymmetric laminates
Material Systems

m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETL5 3502
1 127 277 417 408 387 .389 418 424 468
2 .066 151 236 231 218 220 236 241 .269
3 044 103 162 158 149 150 161 165 185
4 033 078 122 120 113 114 122 125 140
5 .027 062 .098 .096 091 .092 .098 .100 113
6 .022 .052 .082 .080 .076 .076 .082 .084 .094
7 .019 .045 .070 .069 .065 .066 .070 .072 .081
8 .017 .039 062 .060 .057 .057 062 .063 .071

a 172
Table 45. Values of e» = Bzz(]ﬁ) for (0/90/+45), unsymmetric laminates
Material Systems

m S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

BorowAl | Lo Epoxy | IM7/5260 | AS413502 | S0 epoxy PETLS 3500
1 -.025 .020 .008 .020 .021 .039 -.011 014 .015
2 -.012 .009 .003 .008 .009 016 -.004 .006 .006
3 -.008 006 002 .005 006 010 -.003 004 004
4 -.006 004 002 004 004 .008 -.002 .003 .003
5 -.005 .003 .001 .003 .003 .006 -.002 .002 .002
6 -.004 .003 .001 .003 .003 .005 -.001 .002 .002
7 -.003 .002 .001 .002 .002 .004 -.001 .002 .002
8 -.003 .002 .001 .002 .002 .004 -.001 .001 .001
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Table 46. Values of p =22+

\/DllD22

for (+0/0/90) and (-6/0/90) three-ply laminates

Material Systems

0,
S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

deg | Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502

0 .680 435 157 177 220 .229 138 144 064

5 .689 450 .176 .196 .239 247 158 .164 .085
10 713 491 234 253 293 .300 216 222 147
15 752 .556 .326 .343 379 .386 310 315 247
20 .801 .641 447 462 492 498 433 438 .380
25 .855 736 .589 .601 .624 .629 578 .582 537
30 .907 .834 740 748 763 768 731 736 708
35 951 .923 .886 .891 .896 .902 .879 .886 .877
40 981 .992 1.01 1.01 1.09 1.02 1.00 1.02 1.03
45 .993 1.03 1.10 1.10 1.09 1.10 1.09 1.11 1.15
50 .985 1.04 1.13 1.14 1.11 1.14 1.11 1.15 1.22
55 .959 1.01 1.10 1.12 1.09 1.12 1.08 1.13 1.23
60 918 941 1.01 1.03 1.01 1.05 973 1.04 1.15
65 .868 .856 .868 .896 .878 932 .821 .896 .994
70 815 762 .695 730 728 784 .645 17 776
75 767 .672 .525 .564 .579 .634 475 537 .538
80 728 .600 .384 425 457 .506 337 .387 332
85 703 552 293 335 376 422 248 .290 .196
90 .695 .536 262 .303 .349 .393 217 .256 .148

%
Table 47. Values of (%) for (+6/0/90) and (-6/0/90) three-ply laminates
22
0 Material Systems
S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

deg | Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502

0 1.00 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02

5 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02
10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
15 .997 991 .988 .987 .988 .987 .988 .987 .986
20 991 975 .965 .965 .966 .965 .966 .964 .960
25 .984 .955 .936 935 .938 935 .938 933 927
30 976 931 .900 .899 .904 .900 .903 .897 .886
35 967 .903 .859 .858 .866 .860 .863 .854 .838
40 957 .874 .815 .813 .824 .816 .820 .808 785
45 .948 .845 769 767 781 770 776 760 730
50 938 817 724 722 739 726 733 713 .674
55 .929 791 .684 .680 701 .685 .695 .670 .622
60 922 769 .649 .645 .668 .649 .663 .633 576
65 915 751 .622 .616 .642 .620 .638 .604 538
70 910 738 .602 .596 .623 .598 .621 .583 Sl
75 .906 728 .589 .582 .610 .583 .609 .569 493
80 .903 721 .582 574 .602 573 .603 561 484
85 901 17 578 .569 .598 .568 .600 557 479
90 901 716 577 .568 597 567 .599 .556 478
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Table 48. Values of (@

ajy

:

1

for (+6/0/90)_and (-6/0/90)_ laminates (m=1,2,...)

Material Systems

0,
S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

deg Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3500

0 1.04 1.11 1.16 1.16 1.15 1.16 1.15 1.17 1.18

5 1.04 1.11 1.15 1.15 1.15 1.16 1.14 1.15 1.16
10 1.04 1.10 1.12 1.13 1.13 1.14 1.11 1.13 1.12
15 1.03 1.09 1.09 1.10 1.10 1.11 1.09 1.10 1.08
20 1.03 1.07 1.07 1.08 1.08 1.09 1.06 1.07 1.05
25 1.02 1.06 1.05 1.06 1.06 1.07 1.04 1.05 1.03
30 1.02 1.04 1.03 1.04 1.04 1.05 1.03 1.03 1.02
35 1.01 1.03 1.02 1.03 1.03 1.03 1.02 1.02 1.01
40 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
45 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
50 .994 .986 .990 .988 .988 .986 992 .990 .994
55 .989 973 .980 976 975 971 .983 979 .987
60 .983 .959 .968 .962 .960 955 972 .967 978
65 978 945 954 946 .944 .938 .959 952 967
70 974 931 936 927 926 919 942 934 951
75 .969 919 915 .906 .906 .899 921 912 928
80 .966 .908 .891 .884 .887 .880 .897 .887 .897
85 .964 901 .871 .867 .872 .865 .876 .866 .862
90 .964 .899 .862 .860 .866 .860 .867 .858 .845

Table 49. Values of v, =2 for (+6/0/90) and (-6/0/90) laminates (m =1, 2, ...)
Vapdyn m m
0 Material Systems
S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

deg | Boron/Al Epory Epoxy | IM7/5260 | AS413502 | S5 epoxy PETLS 3500

0 179 .095 048 .033 051 .038 .040 .033 .009

5 182 .097 .053 .037 .055 .041 .046 .037 .012
10 .188 .106 .064 .046 .064 .048 .059 .046 .017
15 197 117 076 057 076 .058 074 057 022
20 207 130 .086 .067 .087 .067 .086 .066 025
25 218 143 .095 075 .097 076 .095 073 028
30 228 153 .100 081 .105 .082 101 .078 .029
35 235 161 .104 .085 .110 .086 .106 .082 .030
40 .240 .166 .106 .088 113 .089 .108 .084 .030
45 242 .168 107 .088 114 .090 .109 .084 .030
50 .240 .166 .106 .088 113 .089 .108 .084 .030
55 235 161 .104 .085 .110 .086 .106 .082 .030
60 228 153 .100 081 .105 .082 101 078 .029
65 218 143 .095 .075 .097 .076 .095 .073 .028
70 207 130 .086 .067 .087 .067 .086 .066 .025
75 197 117 076 057 076 .058 074 057 022
80 .188 .106 .064 .046 .064 .048 .059 .046 017
85 .182 .097 .053 .037 .055 041 046 .037 012
90 179 .095 048 .033 051 .038 .040 .033 .009
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Table 50. Values of v, = ——2—

VD Do,

for (+0/0/90) and (-6/0/90) three-ply laminates

Material Systems

0,
S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

deg | Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502

0 179 .092 .046 .032 .049 .037 .038 .031 .008

5 182 .097 .052 .038 .055 .042 .045 .038 .015
10 .190 110 .071 .056 .072 .060 .064 .057 .036
15 202 131 .102 .086 101 .087 .095 .087 .069
20 218 158 142 124 137 123 136 128 112
25 235 188 .189 .169 .180 .165 184 175 164
30 251 219 239 217 225 209 234 225 220
35 .266 246 287 262 268 251 283 274 275
40 275 268 328 301 304 .286 324 315 325
45 279 279 357 328 328 311 351 .345 .363
50 276 .280 .368 338 336 .320 .359 357 .385
55 268 268 358 329 325 312 .346 .349 .385
60 255 247 327 .299 .296 .286 312 318 357
65 238 218 279 252 253 244 261 .269 .303
70 222 187 221 .196 203 194 202 .209 .229
75 206 158 164 141 154 143 146 .149 .149
80 194 134 118 .095 113 .100 .100 .099 .080
85 .186 119 .087 .065 .086 .073 .070 .067 .035
90 183 114 .077 .055 .077 .063 .060 .055 .019

Table 51. Values of u= 22* 3% for (+6/0/90) and (-6/0/90) laminates (m=1, 2, ...)
2\/ajay, m m
o Material Systems
; S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

deg | Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502

0 1.75 2.73 8.58 6.54 5.54 4.93 9.56 8.42 16.9

5 1.73 2.68 8.06 6.24 5.32 4.76 8.91 7.92 14.9
10 1.68 2.55 6.84 5.49 4.78 4.33 7.42 6.74 11.2
15 1.61 2.36 5.51 4.61 4.10 3.78 5.85 5.44 7.98
20 1.52 2.15 4.38 3.81 3.46 3.24 4.57 4.34 5.80
25 1.43 1.95 3.53 3.17 2.93 2.79 3.63 3.52 4.41
30 1.36 1.78 2.94 2.70 2.53 2.44 2.99 2.94 3.53
35 1.28 1.65 2.56 2.39 2.25 2.20 2.58 2.57 3.00
40 1.24 1.57 2.35 2.21 2.09 2.06 2.35 2.36 2.72
45 1.23 1.54 2.28 2.15 2.04 2.01 2.28 2.29 2.63
50 1.24 1.57 2.35 2.21 2.09 2.06 2.35 2.36 2.72
55 1.28 1.65 2.56 2.39 2.25 2.20 2.58 2.57 3.00
60 1.35 1.78 2.94 2.70 2.53 2.44 2.99 2.94 3.53
65 1.43 1.95 3.53 3.17 2.93 2.79 3.63 3.52 4.41
70 1.52 2.15 4.38 3.81 3.46 3.24 4.57 4.34 5.80
75 1.60 2.36 5.51 4.61 4.10 3.78 5.85 5.44 7.98
80 1.68 2.55 6.84 5.49 4.78 4.33 7.42 6.74 11.2
85 1.73 2.68 8.06 6.24 5.32 4.76 8.91 7.92 14.9
90 1.75 2.73 8.58 6.54 5.54 4.93 9.56 8.42 16.9
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Table 52. Values of Y. =

(

3
ana22)

"5 for (+6/0/90), and -y, for (-6/0/90), laminates (m =12, ...

Material Systems

0,
S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

deg Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502

0 0 0 0 0 0 0 0 0 0

5 -.022 -.004 -.019 .008 .001 .023 -.045 .001 .036
10 -.039 .000 -.010 .032 016 .054 -.052 .023 .094
15 -.048 014 .033 .077 .053 .100 -.012 .073 173
20 -.046 .043 .105 142 110 159 .062 146 265
25 -.034 .084 .196 223 184 231 157 235 .366
30 -011 137 .298 315 .270 312 265 .336 474
35 .019 .197 410 415 .365 401 382 444 .590
40 .055 263 .530 522 467 495 .507 .560 716
45 .092 .329 .657 .635 573 .593 .640 .684 .855
50 128 .393 .7192 152 .682 .692 781 815 1.01
55 .158 448 933 871 790 788 931 953 1.19
60 .180 .489 1.08 .986 .890 874 1.09 1.09 1.39
65 .188 .506 1.21 1.09 .969 936 1.24 1.23 1.62
70 181 .490 1.32 1.14 1.00 954 1.36 1.33 1.86
75 156 432 1.33 1.11 957 .894 1.41 1.34 2.06
80 116 .326 1.17 934 7182 719 1.26 1.17 2.05
85 .061 .176 716 .550 451 .409 786 715 1.45
90 0 0 0 0 0 0 0 0 0

Table 53. Valuesof 9, = % for (+0/0/90), and -8, for (-6/0/90)  laminates (m=1,2,...)

a 11a22
0 Material Systems
S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

deg Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502

0 0 0 0 0 0 0 0 0 0

5 .061 176 716 .550 451 409 786 715 1.45
10 116 .326 1.17 .934 782 719 1.26 1.17 2.05
15 .156 432 1.33 1.11 .957 .894 1.41 1.34 2.06
20 181 490 1.32 1.14 1.00 954 1.36 1.33 1.86
25 188 .506 1.21 1.09 969 936 1.24 1.23 1.62
30 .180 489 1.08 986 .890 874 1.09 1.09 1.39
35 158 448 933 871 .790 788 931 953 1.19
40 128 .393 792 752 .682 .692 781 815 1.011
45 .092 .329 .657 .635 573 .593 .640 .684 .855
50 .055 263 .530 522 467 495 .507 .560 716
55 .019 197 410 415 .365 401 .382 444 .590
60 -.011 137 298 315 270 312 265 336 474
65 -.034 .084 .196 223 184 231 157 235 .366
70 -.046 .043 105 142 .110 .159 .062 .146 265
75 -.048 014 .033 .077 .053 .100 -.012 .073 173
80 -.039 .000 -.010 .032 016 .054 -.052 .023 .094
85 -.022 -.004 -.019 .008 .001 .023 -.045 .001 .036
90 0 0 0 0 0 0 0 0 0
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Table 54. Values of Yo =

1/4

for (+0/0/90) and -y, for (-6/0/90) three-ply laminates

(D}
0 Material Systems
S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

deg | Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502
0 0 0 0 0 0 0 0 0 0
5 022 .049 070 070 067 068 .070 072 079
10 .043 097 139 139 132 134 138 .143 156
15 061 141 205 204 193 .198 203 210 231
20 075 179 .265 264 250 .256 262 272 301
25 .084 .209 318 316 .298 307 313 327 .365
30 .087 .230 359 359 336 .348 353 372 420
35 .083 .239 .387 .387 .360 376 378 403 463
40 075 236 398 400 .368 .389 384 417 491
45 062 220 .388 392 357 .384 .369 411 499
50 046 193 .356 364 327 .359 332 382 484
55 .030 158 .303 314 279 316 274 331 441
60 015 120 .235 .249 218 257 .204 262 .369
65 .004 .083 162 177 154 191 132 185 275
70 -.004 052 .096 .110 .096 127 071 113 175
75 -.008 .029 047 .059 051 075 028 057 092
80 -.007 014 017 .026 .023 .038 .005 .023 037
85 -.004 .005 .004 .008 .008 015 -.002 .007 010
90 0 0 0 0 0 0 0 0 0

Table 55. Values of 9, =

P for (+6/0/90) and -, for (-6/0/90) three-ply laminates

(D)D)
0 Material Systems
; S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

deg | Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502
0 0 0 0 0 0 0 0 0 0
5 -.004 .003 .001 .003 .003 .005 -.001 .002 .002
10 -.007 .008 .006 .009 .009 .013 .002 .007 .008
15 -.007 .017 .017 .020 .020 .026 011 .019 .020
20 -.004 .032 .036 .040 .039 .047 .028 .039 .042
25 .003 .051 .064 .068 .066 .075 .056 .068 074
30 .013 .076 .100 .105 .100 110 .092 .105 116
35 .027 104 143 147 .140 .149 135 .149 164
40 .041 132 187 .190 .180 .190 .180 .194 216
45 .055 157 229 231 218 228 222 237 .266
50 .067 176 263 263 248 257 257 272 .308
55 .076 .186 283 283 265 275 277 294 338
60 .079 .186 287 287 267 278 281 .298 .349
65 .077 175 272 272 253 263 .266 284 337
70 .069 153 .240 .240 222 232 234 250 301
75 .057 123 192 .193 178 187 187 201 244
80 .040 .086 134 134 124 130 130 .140 171
85 .021 .044 .069 .069 .064 .067 .067 .072 .088
90 0 0 0 0 0 0 0 0 0
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Table 56. Values of 2 i for (+6/0/90) and (-6/0/90) three-ply laminates

0 Material Systems
S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/
deg Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3500
0 .982 .984 978 978 979 977 .980 977 973
5 982 984 971 973 975 974 972 970 957
10 982 .982 957 962 .967 .967 957 .956 929
15 981 .980 .945 953 .960 .960 .945 944 913
20 .980 979 942 .950 957 958 942 941 911
25 .980 981 947 955 961 962 .949 947 921
30 .980 .986 961 967 971 972 963 961 941
35 981 .994 .980 .986 987 .989 983 981 .968
40 .982 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.00
45 .983 1.01 1.03 1.04 1.03 1.04 1.03 1.04 1.04
50 .984 1.03 1.06 1.07 1.06 1.07 1.06 1.07 1.09
55 .985 1.04 1.09 1.10 1.09 1.10 1.09 1.11 1.15
60 .986 1.05 1.12 1.14 1.11 1.14 1.11 1.14 1.20
65 988 1.06 1.15 1.17 1.14 1.17 1.13 1.17 1.25
70 .989 1.07 1.18 1.20 1.16 1.20 1.15 1.20 1.30
75 .990 1.08 1.20 1.22 1.19 1.23 1.17 1.23 1.35
80 992 1.09 1.23 1.25 1.21 1.26 1.19 1.26 1.40
85 .993 1.09 1.25 1.27 1.23 1.27 1.22 1.29 1.45
90 .993 1.09 1.26 1.28 1.23 1.28 1.23 1.30 1.48
a 12
Table 57. Values of ¢ =Bu(5| for (+0/0/90) and (-6/0/90) three-ply laminates
0 Material Systems
S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/
deg | Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETL5 3502
0 -.167 -438 -578 -.584 -.562 -.585 -.560 -.594 -.640
5 -.165 -436 -.584 -.588 -.564 -.588 -.566 -.600 -.660
10 -.158 -.429 -.596 -.596 -.568 -.591 -.578 -.613 -.697
15 -.146 -417 -.599 -.598 -.565 -.590 -.580 -.618 =715
20 -.130 -.397 -.587 -.586 -.552 -578 -.565 -.608 -.706
25 - 111 -.369 -.557 -.558 -.524 -.553 -532 -.578 -.673
30 -.090 -332 -.510 -515 -481 -513 -483 -.533 -.621
35 -.068 -.289 -450 -458 -427 -461 -421 -473 -.555
40 -.047 -.241 -.381 -.392 -.364 -.400 -.350 -.404 -.479
45 -.028 -.191 -.308 -.321 -.296 -332 -276 -.329 -.397
50 -013 -.144 -233 -.248 =227 -.262 -.203 -253 -313
55 -.002 -.101 -.164 -.178 -.162 -.194 -.136 -.181 -231
60 .004 -.065 -.104 - 117 -.106 -.133 -.081 -.118 -.156
65 .007 -.039 -.059 -.069 -.062 -.083 -.041 -.068 -.093
70 .007 -.020 -.028 -.035 -.032 -.046 -.016 -.034 -.047
75 .005 -.009 -.011 -.015 -.014 -.022 -.004 -.014 -.019
80 .002 -.003 -.003 -.005 -.005 -.008 .000 -.004 -.006
85 .001 -.001 .000 -.001 -.001 -.002 .000 -.001 -.001
90 0 0 0 0 0 0 0 0 0
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Table 58. Valuesof e, = BIZ(M

ply laminates

D11D22

|

1/4

a1

= B | ——==
and e66 66(D 1 1D22

) for (+0/0/90) and (-6/0/90) three-

Material Systems

0,
S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/
deg | Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 | S epoxy PETLS 3500
0 0 0 0 0 0 0 0 0 0
5 -.002 -.003 -.005 -.005 -.005 -.005 -.005 -.005 -.006
10 -.007 -013 -.020 -.020 -019 -018 -.021 -.021 -023
15 -016 -.029 -.045 -.044 -041 -041 -.046 -.046 -052
20 -.027 -.049 -078 -075 -070 -070 -.080 -079 -.090
25 -039 -071 -115 111 -.104 -103 -118 -117 -134
30 -.050 -.093 -153 -.148 -138 -136 -156 -156 -178
35 -.060 112 -.186 -.180 -.168 -.166 -.190 -.190 -218
40 -.066 -125 -212 -205 -.190 -.188 -216 -216 -249
45 -.068 -131 -225 -218 -201 -200 -229 -231 -268
50 -.066 -128 -224 -217 -.200 -.199 -228 -230 -272
55 -.060 -117 -208 -201 -185 -185 -211 -215 -258
60 -.050 -.099 -179 -173 -.158 -159 -.180 -185 -227
65 -039 -076 -.140 -136 -123 -125 -.140 -.145 -182
70 -.027 -053 -.097 -.095 -.086 -.087 -.097 -101 -129
75 -016 -032 -057 -056 -051 -052 -057 -.060 -077
80 -.007 -015 -.026 -.026 -023 -024 -026 -.027 -035
85 -.002 -.004 -.007 -.006 -.006 -.006 -.006 -.007 -.009
90 0 0 0 0 0 0 0 0 0
a 172
Table 59. Values of e»=Bx(522|  for (+6/0/90) and (-6/0/90) three-ply laminates

o Material Systems

’ S-glass/ | Kevlar49/ AS4/ Boron- M7/ P-100/
deg | Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 | S epoxy PETLS 3500
0 181 555 803 816 772 818 7763 834 928
5 182 554 803 815 771 816 768 833 928
10 184 552 801 812 769 812 769 831 925
15 187 547 796 805 762 802 766 825 918
20 189 537 784 790 748 783 758 811 902
25 .190 519 761 764 724 754 739 786 874
30 188 493 724 725 686 712 707 746 831
35 181 457 673 671 635 655 659 692 770
40 170 412 606 602 570 585 597 622 693
45 155 358 528 522 495 505 522 541 603
50 135 300 442 435 412 419 438 452 505
55 112 240 352 346 328 332 351 360 403
60 088 181 266 260 246 248 266 271 305
65 064 128 186 182 172 173 187 190 214
70 043 083 118 115 109 110 119 120 137
75 025 046 065 063 060 060 066 066 075
80 011 020 028 027 026 026 028 028 031
85 003 005 007 007 006 006 007 007 007
90 0 0 0 0 0 0 0 0 0
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Table 60. Values of e = Blé(Dlallllgzz

2

1/4

) for (+6/0/90) and -¢, for (-6/0/90) three-ply laminates

Material Systems

0,
S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/

deg Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502

0 0 0 0 0 0 0 0 0 0

5 -.018 -.036 -.051 -.051 -.048 -.049 -.051 -.052 -.057
10 -.034 -.072 -.104 -.102 -.097 -.098 -.104 -.106 -.121
15 -.048 -.105 -.156 -.153 -.144 -.146 -.156 -.160 -.185
20 -.059 -.133 -.203 -.199 -.187 -.189 -.203 -.208 -.241
25 -.066 -.154 -.239 -.234 -.220 =224 =237 -.246 -284
30 -.068 -.166 -.261 =257 -.240 -.246 =257 -.268 -.309
35 -.065 -.169 -.266 -.263 -.246 -.254 -.261 =275 -.316
40 -.058 -.162 -.255 -.254 -.238 -.247 -.248 -.265 -.306
45 -.047 -.146 -.231 -.232 -.216 -.228 =222 -.240 -.279
50 -.035 -.124 -.196 -.199 -.185 -.198 -.185 -.205 -.240
55 -.023 -.099 -.154 -.159 -.147 -.161 -.143 -.163 -.194
60 -011 -.073 -112 -117 -.109 -.123 -.100 -.120 -.145
65 -.003 -.050 -.073 -.079 -.073 -.086 -.062 -.080 -.098
70 .003 -.031 -.042 -.047 -.044 -.055 -.032 -.047 -.058
75 .006 -.017 -.020 -.025 -.023 -.031 -.013 -.023 -.029
80 .006 -.008 -.007 -.011 -.010 -.016 -.002 -.009 -.011
85 .003 -.003 -.002 -.003 -.003 -.006 .001 -.003 -.003
90 0 0 0 0 0 0 0 0 0

Table 61. Values of ex = B%(Dizén

2

1/4

) for (+6/0/90) and -¢,, for (-6/0/90) three-ply laminates

Material Systems

0,

S-glass/ Kevlar49/ AS4/ Boron- M7/ P-100/
deg Boron/Al Epoxy Epoxy IM7/5260 | AS4/3502 3501-6 epoxy PETLS 3502
0 0 0 0 0 0 0 0 0 0
5 .003 -.003 -.001 -.003 -.003 -.005 .001 -.002 -.002
10 .005 -.007 -.006 -.008 -.008 -.012 -.002 -.007 -.008
15 .006 -.016 -.016 -.019 -.019 -.025 -.010 -.018 -.020
20 .003 -.028 -.034 -.038 -.036 -.044 -.027 -.036 -.040
25 -.003 -.046 -.060 -.065 -.062 -.071 -.052 -.064 -.072
30 -011 -.069 -.096 -.100 -.095 -.105 -.087 -.101 -.113
35 -.023 -.095 -.138 -.142 -.134 -.145 -.129 -.145 -.164
40 -.035 -.122 -.185 -.187 -.176 -.187 -.176 -.193 =221
45 -.047 -.146 -231 =232 =216 -228 =222 -.240 =279
50 -.058 -.166 =270 -.269 -.250 -.262 -.262 -.282 -.333
55 -.065 -.176 -.297 -.294 =271 -.283 -.288 =310 =374
60 -.068 -177 -.305 -.301 =275 -.288 -.297 -.319 -.395
65 -.066 -.166 -.290 -.286 -.261 =272 -.283 -.305 -.386
70 -.060 -.145 -.254 -.250 =227 -.237 -.247 -.266 -.345
75 -.049 -.115 -.199 -.196 -.178 -.187 -.194 -.209 -273
80 -.035 -.079 -.133 -.133 -.121 -.127 -.130 -.140 -.182
85 -.018 -.040 -.066 -.066 -.061 -.064 -.064 -.069 -.087
90 0 0 0 0 0 0 0 0 0
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Table 62. Values of (%

1

)4 for (+6/0/90)  and (-6/0/90), P-100/3502 laminates

0, Stacking sequence number, m
deg m= m=2 m=3 m=4 m=>5 m=6 m=7 m=38§
0 1.02 1.14 1.16 1.17 1.18 1.18 1.18 1.18
5 1.02 1.14 1.16 1.17 1.17 1.18 1.18 1.18
10 1.00 1.13 1.15 1.16 1.17 1.17 1.17 1.17
15 .986 1.11 1.14 1.15 1.16 1.16 1.16 1.16
20 .960 1.10 1.12 1.13 1.14 1.14 1.14 1.14
25 927 1.07 1.10 1.11 1.12 1.12 1.12 1.12
30 .886 1.04 1.07 1.08 1.09 1.09 1.09 1.09
35 .838 1.01 1.04 1.05 1.06 1.06 1.06 1.06
40 785 973 1.007 1.02 1.02 1.03 1.03 1.03
45 730 936 972 .984 990 .993 995 .996
50 .674 901 .938 951 957 .960 .962 .963
55 .622 .869 .907 .920 927 930 932 .933
60 576 .842 .881 .894 .900 .904 .906 .907
65 538 .820 .859 .872 .879 .882 .884 .885
70 S11 .802 .842 .855 .862 .865 .867 .868
75 493 790 .829 .843 .849 .853 .855 .856
80 484 782 .821 .835 .841 .844 .846 .847
85 479 77 .816 .830 .836 .839 .841 .842
90 478 776 815 .828 .834 .838 .840 .841

Table 63. Values of f=2222Cw  for (+6/0/90) and (-6/0/90)_ P-100/3502 laminates

/DDy

0, Stacking sequence number, m
deg m=1 m=2 m=3 m=4 m=>5 m=6 m=7 m=38
0 .064 .066 .067 068 068 068 068 068
5 .085 .083 .083 .083 .083 .083 .083 .083
10 .147 131 129 128 128 128 128 128
15 247 .208 202 .200 .199 198 198 198
20 .380 .306 294 290 .289 .288 287 287
25 537 415 397 391 .388 .387 .386 .385
30 708 524 498 489 485 483 482 481
35 877 .618 .584 572 .567 .565 .563 .562
40 1.03 .684 .642 .629 .623 .619 .617 .616
45 1.15 713 .665 .650 .643 .639 .637 .635
50 1.22 .698 .648 .632 .624 .620 .618 .617
55 1.23 .642 593 577 570 .567 564 .563
60 1.15 .553 .509 495 489 486 484 482
65 .994 444 408 397 392 .389 .388 387
70 776 .330 .304 295 292 290 .289 .288
75 .538 226 .209 204 201 .200 .199 .199
80 332 144 134 131 130 129 129 128
85 .196 091 .086 .085 .084 .084 .084 .084
90 .148 073 .070 .069 .069 068 068 068
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Table 64. Values of v, = ——2 for (+6/0/90)_ and (-6/0/90)_ P-100/3502 laminates

vDiiDo,

0, Stacking sequence number, m
deg m=1 m=2 m=3 m=4 m=35 m=6 m=7 m=8
0 .008 .009 .009 .009 .009 .009 .009 .009
5 015 014 014 014 014 014 014 014
10 .036 .030 .029 .029 .029 .029 029 029
15 .069 .055 .053 .052 .052 .052 .052 .052
20 112 .088 .084 .082 .082 .081 .081 .081
25 .164 124 118 .116 115 114 114 114
30 220 .160 151 .148 147 .146 .146 .145
35 275 191 179 175 174 173 172 172
40 325 212 .199 .194 192 191 .190 .190
45 363 222 .206 201 .199 197 197 .196
50 .385 217 .200 .195 .193 191 191 .190
55 .385 .198 182 177 175 174 173 172
60 357 .168 154 150 .148 147 .146 .146
65 .303 132 121 117 116 115 114 114
70 229 .095 .086 .084 .083 082 082 081
75 .149 .060 .055 .053 .053 .052 .052 .052
80 .080 .033 .030 .029 .029 .029 .029 .029
85 .035 015 014 014 014 014 014 014
90 019 .009 .009 .009 .009 .009 .009 .009

Table 65. Values of Yo =

16

P for (+6/0/90). and -y, for (-6/0/90) P-100/3502 laminates

(D7D,

0, Stacking sequence number, m
deg m=1 m=2 m=3 m=4 m=>5 m=6 m=7 m=3§
0 0 0 0 0 0 0 0 0
5 .079 .056 052 051 .050 .050 .050 .050
10 .156 .109 .102 .099 .098 .098 097 097
15 231 159 .148 144 142 141 141 .140
20 301 201 .186 181 179 178 177 177
25 .365 234 216 210 207 206 205 204
30 420 .256 234 227 224 222 221 221
35 463 .263 .239 232 228 226 225 224
40 491 .256 231 223 219 217 216 215
45 499 .235 210 202 .198 .196 .195 .195
50 484 201 178 171 .168 .166 .165 .165
55 441 .160 141 135 132 131 130 129
60 369 117 102 .098 .096 095 094 094
65 275 077 067 064 .063 062 061 061
70 175 045 .039 .037 .036 .036 .036 .035
75 .092 022 019 018 018 018 018 017
80 037 .009 .008 .007 .007 .007 .007 .007
85 010 .002 .002 .002 .002 .002 .002 .002
90 0 0 0 0 0 0 0 0
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Table 66. Values of 8,= 2% for (+6/0/90), and -8, for (-6/0/90), P-100/3502 laminates

(D1D3,)
0, Stacking sequence number, m
deg m=1 m=2 m=3 m=4 m=S5 m=6 m=7 m=8
0 0 0 0 0 0 0 0 0
5 .002 .002 .002 .002 .002 .002 .002 .002
10 .008 .007 .007 .007 .007 .007 .007 .007
15 .020 .018 .018 .017 .017 .017 .017 .017
20 .042 .037 .036 .035 .035 .035 .035 .035
25 074 .063 062 .061 .061 .061 .061 .061
30 116 .097 094 .093 .093 .093 .093 .093
35 .164 135 131 130 129 128 128 128
40 216 173 167 .165 .164 .164 .163 .163
45 266 206 198 195 194 194 .193 .193
50 .308 229 220 217 215 215 214 214
55 .338 240 230 226 225 224 223 223
60 .349 237 226 223 221 220 220 219
65 337 220 210 .206 .205 204 204 .203
70 301 191 .182 179 178 177 176 176
75 244 152 144 142 141 .140 .140 .140
80 171 .105 .100 .098 .098 .097 .097 .097
85 .088 054 051 .050 .050 .050 .050 .050
90 0 0 0 0 0 0 0 0
h .
Table 67. Values of J12(a),a3,D,, D) for (+6/0/90)_and (-6/0/90)_P-100/3502 laminates

0, Stacking sequence number, m
deg m=1 m=2 m=3 m=4 m=>5 m=6 m=7 m=3§
0 .973 .989 .995 .997 .998 .999 .999 .999
5 957 971 977 979 .980 981 981 981
10 .929 .940 .944 .946 947 948 .948 .948
15 913 917 921 922 923 .924 .924 .924
20 911 .906 .909 910 911 911 911 911
25 921 904 905 .906 907 907 907 907
30 941 908 907 907 907 907 907 907
35 .968 913 910 .909 .909 .909 .909 .909
40 1.00 919 913 912 911 911 911 911
45 1.04 .924 916 914 913 912 912 912
50 1.09 .928 917 914 913 912 911 911
55 1.15 931 917 913 911 911 910 910
60 1.20 933 917 912 910 909 .909 908
65 1.25 .936 918 913 911 910 .909 .909
70 1.30 942 923 918 916 914 914 913
75 1.35 .956 937 931 .929 927 927 .926
80 1.40 .982 .962 .956 .953 .952 951 951
85 1.45 1.02 995 .989 .986 .985 984 984
90 1.48 1.04 1.01 1.01 1.00 1.00 1.00 1.00
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Table 68. Values of e =B“(D111

12
a

) for (+0/0/90)_and (-6/0/90)_P-100/3502 laminates

0, Stacking sequence number, m
deg m=1 m=2 m=3 m=4 m=>5 m=6 m="7 m=38
0 -.640 -.291 -.191 -.142 -.114 -.095 -.081 -.071
5 -.660 -.299 -.196 -.147 =117 -.097 -.083 -.073
10 -.697 -.314 -.206 -.153 -.122 -.102 -.087 -.076
15 =715 -.318 -.208 -.155 -.124 -.103 -.088 -077
20 -.706 -.308 -.201 -.150 -.119 -.099 -.085 -.074
25 -.673 -.286 -.186 -.138 -.110 -.092 -.078 -.069
30 -.621 -.254 -.165 -.122 -.097 -.081 -.069 -.061
35 -.555 -217 -.140 -.104 -.083 -.069 -.059 -.051
40 -479 -177 -.113 -.084 -.067 -.055 -.047 -.041
45 -.397 -.137 -.087 -.064 -.051 -.043 -.036 -.032
50 -.313 -.100 -.063 -.046 -.037 -.031 -.026 -.023
55 -.231 -.067 -.042 -.031 -.025 -.020 -.018 -.015
60 -.156 -.041 -.026 -019 -.015 -.013 -011 -.009
65 -.093 -.023 -014 -.010 -.008 -.007 -.006 -.005
70 -.047 -.011 -.007 -.005 -.004 -.003 -.003 -.002
75 -019 -.004 -.003 -.002 -.002 -.001 -.001 -.001
80 -.006 -.001 -.001 -.001 .000 .000 .000 .000
85 -.001 .000 .000 .000 .000 .000 .000 .000
90 0 0 0 0 0 0 0 0

Table 69. Values of ex» = Bzz(]%) for (+6/0/90),, and (-6/0/90), P-100/3502 laminates

12

0, Stacking sequence number, m
deg m=1 m=2 m=3 m=4 m=>5 m=6 m="7 m=8
0 928 527 361 274 220 .184 158 138
5 928 527 361 273 .220 184 158 138
10 925 525 .360 273 219 183 157 138
15 918 521 357 270 217 182 156 137
20 902 512 351 .266 214 179 153 134
25 .874 496 .340 258 207 173 .149 130
30 831 472 323 .245 .197 .164 141 124
35 770 437 .300 227 183 153 131 115
40 .693 .394 270 204 164 137 118 .103
45 .603 .343 235 178 143 120 .103 .090
50 .505 287 197 .149 120 .100 .086 .075
55 403 229 157 119 .096 .080 .069 .060
60 .305 173 .119 .090 .072 .060 .052 .045
65 214 122 .084 .063 .051 .043 .037 .032
70 137 .078 .053 .040 .032 .027 .023 .020
75 .075 .042 .029 .022 .018 .015 .013 011
80 .031 .018 012 .009 .007 .006 .005 .005
85 .007 .004 .003 .002 .002 .001 .001 .001
90 0 0 0 0 0 0 0 0
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Table 70. Values of e, = BIZ(M

P-100/3502 laminates

D11D22

1/4

|

apja
=B 11422
and “6 66(D 1 1D22

| for (+6/0/90), and (-6/0/90),

0, Stacking sequence number, m
deg m=1 m=2 m=3 m=4 m=>5 m=6 m=7 m=3§

0 0 0 0 0 0 0 0 0

5 -.006 -.003 -.002 -.001 -.001 -.001 -.001 -.001
10 -.023 -.012 -.008 -.006 -.005 -.004 -.003 -.003
15 -.052 -.026 -.018 -.013 -.011 -.009 -.008 -.007
20 -.090 -.045 -.030 -.023 -.018 -.015 -.013 -.011
25 -.134 -.066 -.044 -.033 -.026 -.022 -.019 -016
30 -.178 -.086 -.057 -.043 -.034 -.029 -.024 -.021
35 -.218 -.103 -.068 -.051 -.041 -.034 -.029 -.026
40 -.249 -.114 -.076 -.057 -.045 -.038 -.032 -.028
45 -.268 -.119 -.078 -.059 -.047 -.039 -.033 -.029
50 =272 -.116 -.076 -.057 -.045 -.038 -.032 -.028
55 -.258 -.105 -.069 -.051 -.041 -.034 -.029 -.026
60 -.227 -.088 -.058 -.043 -.034 -.029 -.025 -.021
65 -.182 -.068 -.044 -.033 -.026 -.022 -.019 -.016
70 -.129 -.047 -.031 -.023 -.018 -.015 -.013 -011
75 -.077 -.027 -.018 -.013 -.011 -.009 -.008 -.007
80 -.035 -012 -.008 -.006 -.005 -.004 -.003 -.003
85 -.009 -.003 -.002 -.001 -.001 -.001 -.001 -.001
90 0 0 0 0 0 0 0 0

3 1/4
Table 71. Values of e = BIG(Dilszz) for (+6/0/90), and -¢,, for (-6/0/90)_ P-100/3502
laminates

0, Stacking sequence number, m
deg m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=38

0 0 0 0 0 0 0 0 0

5 -.057 -.029 -.020 -.015 -.012 -.010 -.008 -.007
10 -.121 -.061 -.041 -.031 -.025 -.021 -.018 -.015
15 -.185 -.093 -.062 -.047 -.037 -.031 -.027 -.023
20 -.241 -.120 -.080 -.060 -.048 -.040 -.035 -.030
25 -.284 -.139 -.093 -.070 -.056 -.047 -.040 -.035
30 -.309 -.149 -.099 -.075 -.060 -.050 -.043 -.037
35 =316 -.149 -.099 -.074 -.059 -.050 -.042 -.037
40 -.306 -.140 -.093 -.069 -.056 -.046 -.040 -.035
45 -.279 -.124 -.082 -.061 -.049 -.041 -.035 -.030
50 -.240 -.102 -.067 -.050 -.040 -.033 -.029 -.025
55 -.194 -.079 -.052 -.039 -.031 -.026 -.022 -019
60 -.145 -.056 -.037 -.027 -.022 -.018 -016 -014
65 -.098 -.036 -.024 -.018 -014 -012 -.010 -.009
70 -.058 -.021 -014 -.010 -.008 -.007 -.006 -.005
75 -.029 -.010 -.007 -.005 -.004 -.003 -.003 -.002
80 -.011 -.004 -.003 -.002 -.002 -.001 -.001 -.001
85 -.003 -.001 -.001 -.001 .000 .000 .000 .000
90 0 0 0 0 0 0 0 0

140




2 1/4

Table 72. Values of ex = st(Di%n) for (+6/0/90), and -¢,, for (-6/0/90), P-100/3502

laminates

0, Stacking sequence number, m
deg m= m=2 m=3 m=4 m=>5 m=6 m=7 m=38§
0 0 0 0 0 0 0 0 0

5 -.002 -.001 -.001 -.001 .000 .000 .000 .000
10 -.008 -.004 -.003 -.002 -.002 -.001 -.001 -.001
15 -.020 -010 -.007 -.005 -.004 -.003 -.003 -.002
20 -.040 -.020 -013 -010 -.008 -.007 -.006 -.005
25 -072 -.035 -.023 -018 -014 -012 -010 -.009
30 -113 -.055 -.036 -.027 -.022 -018 -016 -014
35 -.164 -077 -.051 -.039 -.031 -.026 -.022 -.019
40 -.221 -.101 -.067 -.050 -.040 -.033 -.029 -.025
45 -279 -.124 -.082 -.061 -.049 -.041 -.035 -.030
50 -.333 -.141 -.093 -.070 -.056 -.046 -.040 -.035
55 -374 -.152 -.100 -.075 -.060 -.050 -.042 -.037
60 -.395 -.153 -.101 -.075 -.060 -.050 -.043 -.037
65 -.386 -.144 -.094 -.070 -.056 -.047 -.040 -.035
70 -.345 -.125 -.082 -.061 -.049 -.040 -.035 -.030
75 -273 -.097 -.063 -.047 -.038 -.031 -.027 -.023
80 -.182 -.064 -.042 -.031 -.025 -.021 -018 -015
85 -.087 -.031 -.020 -015 -012 -010 -.008 -.007
90 0 0 0 0 0 0 0 0

+ C direction

Boundary curve, /A

Portion of the tangent plane at point p

+ E, direction

~
€,

7>

X

Tangent plane at
arbitrary point of A

+ E, direction

Shell reference surface, A

Figure 1. Coordinate system and unit-magnitude base-vector fields for points

of undeformed shell.
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+ C direction

Edge §, = a,
q,(E, E)

Edge §, = az\

+ E, direction

S(E)‘\

q,(5, &)
Edge &, =Db,

+E, direction M(g)

N
N(E,)

Edge &, =b,

Figure 2. Sign convention for applied loads.

+ ¢ direction Arbitrary lamina

Line tangent to
fiber at (€,,E,, T
€% 5) +E, direction
Fiber angle, 06

N

(,8,0)

Line tangent to E,
coordinate curve

at &, %)

+ E, direction

+ E, direction

(E,&,0)

Shell reference surface /

Figure 3. Fiber orientation of an arbitrary lamina.

+E, direction
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Figure 4. Effects of lamina material properties on nondimensional flexural orthotropy parameter 3 for [(+6 /-0)_],
[(-6 /+0) ], (+6 /-6) , and (-6 /+0), angle-ply laminates (m =1, 2, ...).
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Figure 5. Effects of lamina material properties on parameter coefficients in equations (52a) and (55) for [(+0 /-0)_],,
[(-6 /+0) ], (+6 /-0),, and (-8 /+0) , angle-ply laminates (m =1, 2, ...).
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Figure 6. Effects of lamina material properties on Poisson’s ratios defined by equations (52¢) and (59d) for [(+6 /-0), ],
[(-6 /+0) ], (+6 /-0),, and (-0 /+0), angle-ply laminates (m =1, 2, ...).
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Figure 7. Effects of lamina material properties on nondimensional membrane orthotropy parameter p for
[(+6/-8) ], [(-8 /+0)_], (+6 /-8)_, and (-0 /+0), angle-ply laminates (m =1, 2, ...).
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Figure 8. Effects of lamina material properties on Batdorf-Stein-parameter coefficient in equations (45) and (48)
for [(+6 /-0), ], [(-6 /+0)_],, (+6 /-0),, and (-0 /+8)  angle-ply laminates (m =1, 2, ...).
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Figure 9. Effects of lamina material properties on nondimensional flexural anisotropy parameters vy, for [(+6/-0), ],
laminates and -y, for [(-6/+0) ], laminates.
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Figure 10. Effects of lamina material properties on nondimensional flexural anisotropy parameters §, for [(+6/-0),_],
laminates and -3, for [(-6/+0), ], laminates.
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Figure 11. Effects of lamina material properties on flexural anisotropy parameters y, and 8, for [(+6/-0),_],
and -y, and -9, for [(-6/+0)_], symmetric angle-ply laminates, respectively (m = 1).
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Figure 12. Effects of lamina material properties on nondimensional load-path eccentricity parameters -e¢,, and +¢,,

defined by equation (75b) for (+0 /-0), and (-6 /+0), antisymmetric angle-ply laminates, respectively (m = 1).
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Figure 13. Effects of lamina material properties on nondimensional load-path eccentricity parameters -¢,, and +e,,

defined by equation (75f) for (+0 /-0), and (-0 /+0)_ antisymmetric angle-ply laminates, respectively (m = 1).
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Figure 14. Effects of lamina material properties on nondimensional load-path eccentricity parameters ¢,, and e,
defined by equation (75) for (-0 /+8), and -¢,, and -¢,, for (+6 /-0), antisymmetric angle-ply laminates,
respectively (m = 1).
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Figure 15. Effects of number of plies on flexural anisotropy parameters vy, for [(+68/-0) ] and -y, for [(-0/+0)_]
P-100/3502 symmetric angle-ply laminates.
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Figure 16. Effects of number of plies on flexural anisotropy parameters §, for [(+6/-0) ], and -d, for [(-6/+0)_],
P-100/3502 symmetric angle-ply laminates.
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Figure 17. Effects of lamina material properties on flexural anisotropy parameters y, and §, for [(+6/-0),_],
and -y, and -§, for [(-6/+8) ], P-100/3502 symmetric angle-ply laminates, respectively (m = 1).
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Figure 18. Effects of number of plies on nondimensional load-path eccentricity parameters -¢,, and +e,,
defined by equation (75e¢) for (+0 /-8)  and (-0 /+8)_ P-100/3502 antisymmetric angle-ply laminates, respectively.
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Figure 19. Effects of number of plies on nondimensional load-path eccentricity parameters -e,, and +e,,
defined by equation (75f) for (+0 /-0),, and (-0 /+8)_ P-100/3502 antisymmetric angle-ply laminates, respectively.
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Figure 20. Effects of number of plies on nondimensional load-path eccentricity parameters e
defined by equation (75) for (-0 /+0),, P100/3502 antisymmetric angle-ply laminates.
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Figure 21. Effects of number of plies on parameter coefficients in equation (55) for P-100/3502 quasi-isotropic
laminates.
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Figure 22. Effects of number of plies on the nondimensional flexural orthotropy parameter g for P-100/3502
quasi-isotropic laminates.
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Figure 23. Effects of number of plies on the nondimensional Poisson’s ratio v, for P-100/3502
quasi-isotropic laminates.
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Figure 24. Effects of number of plies on the nondimensional flexural anisotropy parameter vy, for P-100/3502
quasi-isotropic laminates.
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Figure 25. Effects of number of plies on the nondimensional flexural anisotropy parameter , for P-100/3502
quasi-isotropic laminates.
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Figure 26. Effects of number of plies on Batdorf-Stein-parameter coefficients in equations (45) and (48) for P-100/3502
quasi-isotropic laminates.
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Figure 27. Effects of number of plies on nondimensional load-path eccentricity parameter ¢, defined
by equations (75b) for P-100/3502 quasi-isotropic laminates.
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Figure 28. Effects of number of plies on nondimensional load-path eccentricity parameters ¢,, and ¢, defined by
equations (75) for P-100/3502 quasi-isotropic laminates.
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Figure 29. Effects of number of plies on nondimensional load-path eccentricity parameters ¢, and ¢, defined
by equations (75) for P-100/3502 quasi-isotropic laminates.

155



0.6 : :
(+45/-45/0/90),,
Load-path
eccentricity
parameter, 0.4
a,, \?
€= 322(072:2) '

[(0/90/+45/-45),],, [(0/90/+45/-45),],,
[(+45/-45/0/90), ], and [(+45/-45/0/90),],

0.2 |-

(0/90/+45/-45), B |
o L L ;
0 8 16 24 32 40 48

Number of plies

Figure 30. Effects of number of plies on nondimensional load-path eccentricity parameter e,, defined by
equations (75d) for P-100/3502 quasi-isotropic laminates.
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Figure 31. Effects of lamina material properties on nondimensional flexural orthotropy parameter 3 for (+0 /0/90)
and (-0 /0/90) unbalanced, unsymmetric three-ply laminates.
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Figure 32. Effects of lamina material properties on parameter coefficient in equation (55) for (+0 /0/90)
and (-0 /0/90) unbalanced, unsymmetric three-ply laminates.
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Figure 33. Effects of lamina material properties on parameter coefficient in equation (52a) (+6 /0/90)
and (-6 /0/90),_ unbalanced, unsymmetric laminates (m =1, 2, ...).
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Figure 34. Effects of lamina material properties on Poisson’s ratio defined by equation (52¢) for (+6 /0/90),
and (-6 /0/90) , unbalanced, unsymmetric laminates (m = 1, 2, ...).
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Figure 35. Effects of lamina material properties on Poisson’s ratio defined by equation (59d) for (+6 /0/90)
and (-0 /0/90) unbalanced, unsymmetric three-ply laminates.
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Figure 36. Effects of lamina material properties on nondimensional membrane orthotropy parameter p for
(+6 /0/90),, and (-0 /0/90)  unbalanced, unsymmetric laminates (m =1, 2, ...).
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Figure 37. Effects of lamina material properties on nondimensional membrane anisotropy parameters y, and -y, for
(+6 /0/90),, and (-6 /0/90),, unbalanced, unsymmetric laminates, respectively (m =1, 2, ...).
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Figure 38. Effects of lamina material properties on nondimensional membrane anisotropy parameters §_ and -3, for
(+6 /0/90),, and (-6 /0/90)_ unbalanced, unsymmetric laminates, respectively (m = 1, 2, ...).
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Figure 39. Effects of lamina material properties on membrane anisotropy parameters y, and 8, for (+6 /0/90)

unbalanced, unsymmetric laminates (m =1, 2, ...).
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Figure 40. Effects of lamina material properties on nondimensional flexural anisotropy parameters y, and -y, for
(+6 /0/90),, and (-6 /0/90),, unbalanced, unsymmetric laminates, respectively (m = 1).
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Figur 41. Effects of lamina material properties on nondimensional flexural anisotropy parameters §, and -§, for
(+6 /0/90),, and (-6 /0/90),, unbalanced, unsymmetric laminates, respectively (m = 1).
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Figure 42. Effects of lamina material properties on flexural anisotropy parameters y, and 3, for (+6/0/90)
unbalanced, unsymmetric laminates (m = 1).
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Figure 43. Effects of lamina material properties on Batdorf-Stein-parameter coefficients in equations (45) and (48)
for (+6 /0/90), and (-8 /0/90), unbalanced, unsymmetric laminates (m = 1).
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Figure 44. Effects of lamina material properties on nondimensional load-path eccentricity parameter e,,
defined by equation (75b) for (+6 /0/90),, and (-6 /0/90)  unbalanced, unsymmetric laminates, respectively (m = 1).
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Figure 45. Effects of lamina material properties on nondimensional load-path eccentricity parameters ¢,, and e
defined by equations (75) for (+6 /0/90)  and (-0 /0/90)  unbalanced, unsymmetric laminates, respectively (m = 1).
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Figure 46. Effects of lamina material properties on nondimensional load-path eccentricity parameter ¢,
defined by equation (75d) for (+6 /0/90), and (-6 /0/90)  unbalanced, unsymmetric laminates, respectively (m = 1).
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Figure 47. Effects of lamina material properties on nondimensional load-path eccentricity parameters ¢, and -e,,
defined by equation (75) for (+6 /0/90)  and (-6 /0/90), unbalanced, unsymmetric laminates, respectively (m = 1).
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Figure 48. Effects of lamina material properties on nondimensional load-path eccentricity parameters e, and
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defined by equations (75) for (+6 /0/90),, and (-6 /0/90),, unbalanced, unsymmetric laminates, respectively (m = 1).
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Figure 49. Effects of lamina material properties on nondimensional load-path eccentricity parameters ¢, and e,
defined by equations (75) for (+6 /0/90), unbalanced, unsymmetric laminates (m = 1).
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Figure 50. Effects of number of plies on parameter coefficients in equation (55) for (+6 /0/90)_ and (-6 /0/90)
unbalanced, unsymmetric P-100/3502 laminates.
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Figure 51. Effects of number of plies on the orthotropy parameter § for (+0/0/90) and (-6 /0/90)
unbalanced, unsymmetric P-100/3502 laminates.
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Figure 52. Effects of number of plies on Poisson’s ratio defined by equation (59d) for (+6 /0/90),, and (-6 /0/90),,
unbalanced, unsymmetric P-100/3502 laminates.
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Figure 53. Effects of number of plies on flexural anisotropy parameters vy, and -y, for (+6/0/90), and (-6 /0/90),
unbalanced, unsymmetric P-100/3502 laminates, respectively.
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Figure 54. Effects of number of plies on flexural anisotropy parameters 8, and -8, for (+6/0/90) and (-6 /0/90)
unbalanced, unsymmetric P-100/3502 laminates, respectively.
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Figure 55. Effects of the number of plies on flexural anisotropy parameters y, and 8, for (+6/0/90)
unbalanced, unsymmetric P-100/3502 laminates.
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Figure 56. Effects of number of plies on Batdorf-Stein-parameter coefficients in equations (45) and (48)

for (+6/0/90), and (-0 /0/90) unbalanced, unsymmetric P-100/3502 laminates.
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Figure 57. Effects of number of plies on nondimensional load-path eccentricity parameter ¢,, defined by
equation (75b) for (+6 /0/90), and (-6 /0/90), unbalanced, unsymmetric P-100/3502 laminates.
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Figure 58. Effects of number of plies on nondimensional load-path eccentricity parameter ¢,, defined by
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equation (75d) for (+6 /0/90), and (-6 /0/90), unbalanced, unsymmetric P-100/3502 laminates.
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Figure 59. Effects of number of plies on nondimensional load-path eccentricity parameters e,
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defined by equations (75) for (+6 /0/90), and (-0 /0/90), unbalanced, unsymmetric P-100/3502 laminates.
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Figure 60. Effects of number of plies on nondimensional load-path eccentricity parameters ¢, and -¢,, defined by
equation (75) for (+6 /0/90)_ and (-6 /0/90),, unbalanced, unsymmetric P-100/3502 laminates, respectively.
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Figure 61. Effects of number of plies on nondimensional load-path eccentricity parameters ¢, and -¢,, defined
by equation (75) for (+0 /0/90)_ and (-0 /0/90), unbalanced, unsymmetric P-100/3502 laminates, respectively.
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Figure 62. Effects of number of plies on nondimensional load-path eccentricity parameters ¢,, and ¢, defined
by equations (75) for (+6 /0/90), unbalanced, unsymmetric P-100/3502 laminates.
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Appendix
Symbols

domain of the orthogonal Gaussian coordinates (§,, §,) for

the shell reference surface, [a,.b,] x [a., b.]

constants that define the domain of the shell reference surface

Gaussian coordinates;i.e., a,<&,=<b, and a,<§,=<b,

membrane compliances defined by equation (21a), in./Ib

domain of the nondimensional orthogonal Gaussian coordinates

(z,, z,) for the shell reference surface, ['il, h] < [2 b,
L, L, L, L,

metric coefficients of shell reference surface defined by
equation (11)

membrane stiffnesses defined by equation (17), 1b/in.
matrix of constitutive constants defined by equation (154a)

constitutive constants defined by equation (21b), in.
coupling stiffnesses defined by equation (18), 1b

constitutive constants defined by equation (69c)

constitutive constants defined by equation (77)

matix of constitutive constants defined by equation (139b)

differential arc length defined in equation (11), in.
reduced bending stiffnesses defined by equation (21c), in-1b

constitutive constants defined by equations (79)

matix of constitutive constants defined by equation (139c¢)

bending stiffnesses defined by equation (19), in-1b
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E]](Zl’ Zz)? Ezz(zw Zz)’ Glz(zl’ Zz)

{E}

€115 €125 €165 €225 €265 €66

©) ©

E]](Zl? Zy, ﬁ)’ Ezz(zl’ Z, ﬁ)’

©0)

Glz(zl’ Z2, f))

1) ) 1)

E“(zl, Zz)a Ezz(zl’ Zz)a GIZ(Zl’ Z2)

?(Z]’ Zz)

0
(21, 2,)

B B

7.9,

@MB (DB

12 2

Kn(zw z,), Kzz(zu z,), Z]Z(Zl’ z,)

©0) ©0)

Z”(Z], Z, ﬁ), K’zz(zp Z3, f’)

©)

z12(zl’ 22, f’)

nondimensional linear differential operators defined by

equations (122b), (122¢), (122d), (124b), and (117b),
respectively

lamina moduli, psi

nondimensional membrane strain fields defined by
equations (46)

vector of nondimensional membrane strains defined by
equation (151b)

vector of nondimensional membrane strains associated with
adjacent equilibrium states and defined by equation (213a)

nondimensional load-path eccentricity parameters defined by
equations (75)

nondimensional membrane-strain fields associated with the

primary equilibrium path and defined by equations (177)

nondimensional membrane-strain fields associated with
adjacent equilibrium states and defined by equations (193)

nondimensional stress function defined by equations (115)

nondimensional stress function associated with adjacent
equilibrium states and defined by equations (214)

shell thickness, in.

boundary integrals defined by equations (134)

boundary integrals defined by equations (205)

nondimensional bending strain fields defined by
equations (49)

nondimensional bending-strain fields associated with the

primary equilibrium path and defined by equations (178)
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%11(21’ Zz)’ %22(Z17 Zz)a 7%12(Z|’ Zz)

(0) ©0)

%ll(zl’ Z2, f’), 7%22(Z1’ 22 13)9

©0)

%12(21’ ZZ’ﬁ)

(1) (1) (1)

%II(ZI’ ZZ)’ %22(21’ ZZ)’ %12(Zlv Zz)

Lo}
4

nondimensional bending-strain fields associated with
adjacent equilibrium states and defined by equations (194)

vector of nondimensional bending strains defined by
equation (139a)

vector of nondimensional bending strains associated with

adjacent equilibrium states and defined by equation (213c)

characteristic dimensions used for scaling the (§,, &,) Gaussian
coordinates

nondimensional bilinear differential operator defined by
equation (117c¢)

moment per unit length applied to edges §,=a, and §,=b,,
as shown in figure 2, 1b

moment per unit length applied to edges § =a, and § =b,,
as shown in figure 2, Ib

bending stress resultants defined by equation (12b), 1b

nondimensional loading applied to edges §,=a, and §,=b,
and defined by equations (99)

nondimensional loading applied to edges § =a, and § =b,
and defined by equations (98)

nondimensional functions defined by equation (121)

nondimensional bending stress resultants defined by
equations (60)

nondimensional bending stress resultants associated with the
primary equilibrium path (see equations (181) and (195))
nondimensional bending stress resultants associated with
adjacent equilibrium states (see equations (195))

vector of nondimensional functions defined by equation (139d)

vector of nondimensional stress resultants defined by
equation (135b)
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N(&)

NII(EI’ Ez)’ N22(§]’ Ez)’ N]z(%p %2)

%II(ZI’ Zz)’ %22(217 Zz)’ %12(21’ Zz)

©0) ©0)

%11(% Z3, f’), %Zz(zlv Z2s f’),

©)

%IZ(ZI’ Z2s f’)

{7}

[7]

vector of nondimensional stress resultants associated with

adjacent equilibrium states (see equations (211))

loads applied to edges &€, =a, and &, =b,, as shown in
figure 2, Ib/in.

loads applied to edges & =a, and § =b,, as shown in
figure 2, Ib/in.

membrane stress resultants defined by equation (12a), Ib/in.

nondimensional membrane stress resultants defined by
equations (54)

nondimensional membrane stress resultants associated with the

primary equilibrium path (see equations (181) and (195))

nondimensional membrane stress resultants associated with
adjacent equilibrium states (see equations (195))

nondimensional loading applied to edges §,=a, and §,=b,
and defined by equations (99)

nondimensional loading applied to edges § =a, and § =b,
and defined by equations (98)

vector of nondimensional stress resultants defined by
equation (135a)

matrix of nondimensional stress resultants defined by
equation (135¢)

matrix of nondimensional stress resultants associated with the

primary equilibrium path (see equations (211))

vector of nondimensional stress resultants associated with
adjacent equilibrium states (see equations (211))

force per unit area defined by equation (30), psi
nondimensional value of P_ defined by equation (94)

nondimensional function defined by equation (116b)
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q,(8.8), q,(E,,E), q,(E,. &)
Q.. &), Q,E,.E)

gl(zl’ ZZ)’ 72(21’ ZZ)’ g:;(zl’ ZZ)

21(Z|7 Zz)’ 22(217 Zz)

©0) ©0)

21(Zlv Z,, f’)’ 22(Z1’ Zz’f,)

1 2

SE)

SE)

nondimensional loading parameter and corresponding value at

bifurcation, respectively
nondimensional functions defined by equation (119)
vector of nondimensional functions defined by equation (154b)

applied tractions acting on shell reference surface, psi

transverse-shearing stress resultants defined by equation (13),
Ib/in.

transformed reduced stiffnesses for laminae in a state of plane
stress, psi

nondimensional applied tractions acting on shell reference
surface and defined by equations (82), (84), and (92),

respectively

nondimensional transverse-shear stress resultants defined by
equations (86)-(89)

nondimensional shear stress resultants associated with the
primary equilibrium path (see equations (181) and (195))

nondimensional shear stress resultants associated with
adjacent equilibrium states (see equations (195))

vector of nondimensional functions defined by equation (140b)

matrix of nondimensional functions defined by equation (142b)

principal radii of curvature of the shell reference surface, in.

loads applied to edges &,=a, and §,=b,, as shown in
figure 2, Ib/in.

loads applied to edges & =a, and & =b,, as shown in
figure 2, 1b/in.

nondimensional loading applied to edges §,=a, and §,=b,
and defined by equations (99)
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u,(§,8), u,g,E), w(E,&)

Ul(Zn Zz)’ UZ(Z]’ Zz)

) ©0)

U](Zl’ Z2, ﬁ), Uz(Zl» Z2s f')),

©)

W(Zl» Zy, ﬁ)

() (1) i

Ui(21:22), Us(21,22), Wz, 20)

V()

V(&)

W(z,z,)

w(E,E,)

WI(ZI’ Zz)

(Zw Zz)

7,7

12 2

nondimensional loading applied to edges § =a, and § =b,
and defined by equations (98)

components of the displacement vector field of the material
points comprising a shell, in.

displacement components of points of the two-dimensional shell
reference surface defined by T=0

nondimensional displacement fields defined by equations (44)
and (47), respectively
nondimensional displacement fields associated with the primary

equilibrium path and defined by equations (175)

nondimensional displacement fields associated with adjacent
equilibrium states and defined by equations (175)

loads applied to edges &,=a, and §,=b,, as shown in
figure 2, Ib/in.

loads applied to edges & =a, and & =b,, as shown in
figure 2, 1b/in.

nondimensional loading applied to edges §,=a, and &, =b,
and defined by equations (98)

nondimensional loading applied to edges & =a, and § =b,
and defined by equations (99)

Bl—

nondimensional displacement defined by w =[a,;a,,D,,D,,|* W

distribution of small geometric deviations in the T-coordinate
direction, measured perpendicular to the tangent plane at each
point of the shell reference surface

nondimensional geometric imperfection function defined by

1
_ 4
W, = [a11a22D11D22] WI

Nondimensional orthogonal Gaussian coordinates for shell

reference surface givenby & =Lz, and §,=L,z,
Batdorf-Stein parameters defined by equations (45) and (48)
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OE, (z,2,), O0E,(z,, 2,), 8G (2, 2,)

1

6E11(Zl’ ZZ)’ éEzz(Zl’ Z2), 6G12(Z], Zz)

m

@

1)

nondimensional stiffness-weighted aspect ratios defined by
equations (55) and (52a), respectively

nondimensional flexural orthotropy parameter defined by
equation (59a)

fields defining rotation of material line elements tangent to the
shell reference, defined by equations (10)

fields defining rotation of material line elements tangent to the

shell reference surface associated with "small" initial geometric
imperfections

nondimensional flexural-twist anisotropy parameter defined by
equation (59b)

nondimensional membrane anisotropy parameter defined by
equation (52¢)

shearing-strain fields for a three-dimensional shell body

tangential, membrane shearing-strain fields of shell reference
surface

transverse-shearing-strain fields of shell reference
surface

variational operator of the Calculus of Variations

nondimensional flexural-twist anisotropy parameter defined by
equation (59c¢)

nondimensional membrane anisotropy parameter defined by
equation (52d)

nondimensional virtual membrane strain fields defined by
equations (107)

virtual membrane strains associated with adjacent equilibrium
states and defined by equations (208)

vector of nondimensional virtual membrane strains associated

with adjacent equilibrium states and defined by equation (213b)

nondimensional virtual stress function (see equations (150))
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(1)
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62”6)(1
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nondimensional virtual bending strain fields defined by
equations (108)

virtual bending strains associated with adjacent equilibrium
states and defined by equations (209)

vector of nondimensional virtual bending strains defined by
equation (136d)

vector of nondimensional virtual bending strains associated

with adjacent equilibrium states and defined by equation (213d)
nondimensional virtual stress resultants used in equations (143)

virtual-displacement fields of the two-dimensional shell
reference surface defined by T=0

nondimensional virtual-displacement fields defined by
equations (106)

nondimensional radial-displacement field at buckling (see
equations (1) and (2))

external virtual work per unit area defined by equation (23b),
1b/in.

external virtual work per unit length defined by equations (23c),
Ib

internal virtual work per unit area defined by equation (23a),
1b/in.

nondimensional virtual work associated with adjacent
equilibrium states (see equations (203))

nondimensional external virtual work per unit area defined by
equation (109b)

nondimensional virtual work per unit area associated
with adjacent equilibrium states and defined by equation (204a)

external virtual work per unit length defined by equations (113)

nondimensional virtual work per unit length associated
with adjacent equilibrium states and defined by equations (204)
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complementary virtual work defined by equationa (147b) and
(149b), respectively

nondimensional internal virtual work per unit area defined by
equation (109a)

nondimensional internal virtual work per unit area associated
with adjacent equilibrium states and defined by equation (206b)

nondimensional internal virtual work per unit area associated
with adjacent equilibrium states and defined by equation (206c)

nondimensional complementary internal virtual work per unit
area defined by equations (147a) and (149a), respectively

nondimensional complementary internal virtual work per unit
area associated with adjacent equilibrium states and defined by
equation (234)

nondimensional complementary virtual work associated with
adjacent equilibrium states and defined by equation (232c)

virtual membrane-strain fields of shell reference surface

virtual transverse-shearing-strain fields of shell reference
surface

fields defining virtual changes in shell reference-surface

curvature and torsion

virtual rotation fields of the shell reference surface
(see equations (27) and (28))

virtual rotations associated with adjacent equilibrium
states and defined by equations (207)

vector of nondimensional virtual rotations defined by
equation (136c¢)
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{69} vector of virtual rotations associated with adjacent equilibrium

states and defined by equations (212c)

A(E), ASE), A (E) displacements applied to edges &,=a, and &, =b,; positive in
the positive §,, §,, and T directions, respectively, in.

A(E), A(E), A(E) displacements applied to edges & =a, and & =b,; positive in
the positive §,, §,, and T directions, respectively, in.

A(z,), Ay(z,), A(z,) nondimensional displacements applied to edges &, =a, and
&, = b, and defined by equations (99)

A\(z,), Ay(z,), A\(2,) nondimensional displacements applied to edges & =a, and
€, = b, and defined by equations (98)

€ "small" parameter used in bifurcation analysis, see
equations (175)

€,,(€,E,0), €,,(E.E,.0), €,(§,.E,C)  normal-strain fields for a three-dimensional shell body

e1(81. &), €5,(E10 &2) tangential, membrane normal-strain fields of shell reference
surface
0 lamina fiber angle (see figure 3), degrees

K (En Ea)s K0(E1, &), KL(E1 E2)  fields defining changes in shell reference-surface curvature and

torsion
u nondimensional orthotropy parameter defined by equation (52b)
Vir lamina major Poisson's ratio
Vi, Vi generalized laminate Poisson's ratios associated with membrane

and bending action, respectively (see equations (52¢) and (59d))
E,LE) orthogonal Gaussian coordinates for shell reference surface

E,E,0 orthogonal curvilinear coordinates for points of three-
dimensional Euclidean space

P stiffness-weighted radius-to-thickness ratio defined by
equations (10) and (20)
Oy, O35, Oy, O3, Oy, shell stresses, pSl
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D(E)

D(E,)

P, 8, W,(E,. )

Q](Zl’ Zz)’ QZ(ZI’ Z2)

1Q}
[€2]

1}

[€2]

©0) ©0)

Q](Zh Z3, f"), Qz(zlv Zs, f’)

(1) (1)

Ql(zl, 22), Qz(zl, 22)

rotation applied to edges &, =a, and &, =b,; positive about
the positive &, direction

rotation applied to edges & =a, and &, =b,; positive about
the negative &, direction

nondimensional rotation applied to edges §,=a, and §,=b,
and defined by equation (99d)

nondimensional rotation applied to edges & =a, and § =b,
and defined by equation (98d)

fields defining rotations of material line elements perpendicular
to the shell reference surface

nondimensional rotation fields defined by equations (38)-(42)
vector of nondimensional rotations defined by equation (136a)
matrix of nondimensional rotations defined by equation (151c)

vector of nondimensional rotations associated with an initial
geometric imperfection and defined by equation (136b)

matrix of nondimensional rotations associated with an initial
geometric imperfection and defined by equation (151d)

nondimensional rotation fields associated with the primary
equilibrium path and defined by equations (176)

nondimensional rotation fields associated with adjacent
equilibrium states and defined by equations (192)

vector of nondimensional rotation fields associated with the

primary equilibrium path and defined by equations (212a)

matrix of nondimensional rotation fields associated with the

primary equilibrium path and defined by equations (237)

vector of nondimensional rotation fields associated with

adjacent equilibrium states and defined by equations (212b)

general boundary curve enclosing the reference surface domain
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vector of nondimensional stress-function derivatives defined by
equation (139e¢)

matrix of nondimensional stress-function derivatives defined by
equation (142a)

vector of nondimensional stress-function derivatives associated
with adjacent equilibrium states and defined by equation (211a)

vector of nondimensional virtual-stress-function derivatives
defined by equation (151¢)

vector of nondimensional virtual-stress-function derivatives

associated with adjacent equilibrium states and defined by
equation (226b)
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